On the number of limit cycles surrounding a unique singular point for polynomial differential systems of arbitrary degree

被引:4
作者
Garcia, Belen [1 ]
Llibre, Jaume [2 ]
Perez del Rio, Jesus S. [1 ]
机构
[1] Univ Oviedo, Dept Matemat, Oviedo 33007, Spain
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
关键词
Limit cycle; Bifurcation from a center; Averaging theory;
D O I
10.1016/j.na.2007.11.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the number of limit cycles that bifurcate from the periodic orbits of the center x(over dot) = -yR(x, y), y(over dot) = xR(x, y) where R is a convenient polynomial of degree 2, when we perturb it inside the class of all polynomial different systems of degree n. We use averaging theory for computing this number. As a consequence of our study we provide the biggest number of limit cycles surrounding a unique singular point in terms of the degree of the system, known up to now. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4461 / 4469
页数:9
相关论文
共 15 条
[1]   BIFURCATION OF LIMIT-CYCLES FROM CENTERS AND SEPARATRIX CYCLES OF PLANAR ANALYTIC SYSTEMS [J].
BLOWS, TR ;
PERKO, LM .
SIAM REVIEW, 1994, 36 (03) :341-376
[2]   Limit cycles of a perturbed cubic polynomial differential center [J].
Buica, Adriana ;
Llibre, Jaume .
CHAOS SOLITONS & FRACTALS, 2007, 32 (03) :1059-1069
[3]  
Coll B, 2005, DYNAM CONT DIS SER A, V12, P275
[4]  
Ecalle J., 1992, INTRO FONCTIONS ANAL
[5]   On the nonexistence, existence and uniqueness of limit cycles [J].
Giacomini, H ;
Llibre, J ;
Viano, M .
NONLINEARITY, 1996, 9 (02) :501-516
[6]   On the shape of limit cycles that bifurcate from Hamiltonian centers [J].
Giacomini, H ;
Llibre, J ;
Viano, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 41 (3-4) :523-537
[7]  
Guckenheimer J., 1986, APPL MATH SCI, V42
[8]  
ILYASHENKO Y, 1991, T MATH MONOGRAPHS, V94
[9]  
ILYASHENKO YS, 1969, MATH USSR SB, V7, P353
[10]  
LI C, 2001, EXTRACTA MATH, V16, P441