Tensor product Markov chains

被引:5
作者
Benkart, Georgia [1 ]
Diaconis, Persi [2 ]
Liebeck, Martin W. [3 ]
Pham Huu Tiep [4 ]
机构
[1] Univ Wisconsin, Madison, WI 53706 USA
[2] Stanford Univ, Stanford, CA 94305 USA
[3] Imperial Coll, London SW7 2BZ, England
[4] Rutgers State Univ, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
Tensor product; Markov chain; McKay correspondence; Modular representation; Brauer character; Quantum group; RANDOM-WALKS; STEINS METHOD; REPRESENTATIONS; CHARACTER; CONVERGENCE;
D O I
10.1016/j.jalgebra.2019.10.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyze families of Markov chains that arise from decomposing tensor products of irreducible representations. This illuminates the Burnside-Brauer theorem for building irreducible representations, the McKay correspondence, and Pitman's 2M - X theorem. The chains are explicitly diagonalizable, and we use the eigenvalues/eigenvectors to give sharp rates of convergence for the associated random walks. For modular representations, the chains are not reversible, and the analytical details are surprisingly intricate. In the quantum group case, the chains fail to be diagonalizable, but a novel analysis using generalized eigenvectors proves successful. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:17 / 83
页数:67
相关论文
共 83 条
  • [1] Alperin J., 1986, CAMBRIDGE STUDIES AD, V11
  • [2] Alperin J., 1979, J PURE APPL ALGEBRA, V15, P219
  • [3] [Anonymous], 1982, VESTN MOSK U MAT M
  • [4] [Anonymous], 1986, LECT NOTES MATH
  • [5] [Anonymous], 1979, STUD MATH
  • [6] [Anonymous], 2018, SYMMETRY INTEGR GEOM, DOI DOI 10.3842/SIGMA.2018.015
  • [7] [Anonymous], 2018, J ALGEBRA, DOI DOI 10.1016/J.JALGEBRA.2018.05.009
  • [8] [Anonymous], 2020, MATH PROC CAMBRIDGE, DOI DOI 10.1017/S0305004118000786
  • [9] [Anonymous], 2016, ANN I H POINCARE PR, DOI DOI 10.1214/15-AIHP687
  • [10] [Anonymous], 2006, ACTA APPL MATH, DOI DOI 10.1007/S10440-006-9035-4