DS_CABOSFV Clustering Algorithm for High Dimensional Data Stream

被引:0
作者
Pan, Jing [1 ]
机构
[1] Univ Sci & Technol Beijing, Dongling Sch Econ Management, Beijing 100083, Peoples R China
来源
4TH INTERNATIONAL CONFERENCE ON AWARENESS SCIENCE AND TECHNOLOGY (ICAST 2012) | 2012年
关键词
stream data mining; clustering; high dimensionality;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Data stream clustering has become a hot research issue. The high-dimensional data stream clustering is a difficult problem for the data stream mining because the large volumes of data arriving in a stream make most traditional algorithms too inefficient. In this paper, DS_CABOSFV, a high-dimensional data stream clustering algorithm based on CABOSFV algorithm is presented. Our empirical tests show that DS_CABOSFV has low computational complexity and good efficiency for high-dimensional data stream clustering.
引用
收藏
页码:16 / 19
页数:4
相关论文
共 11 条
[1]  
Aggarwal C., 2003, A Framework for Clustering Evolving Data Streams
[2]  
Aggarwal C.C., 2004, Proceedings of the Thirtieth International Conference on Very Large Data Bases-Volume 30, VLDB '04
[3]  
Agrawal R., 1998, Proc. of ACM SIGMOD, P94
[4]  
[Anonymous], J COMPUT RES DEV S
[5]  
[Anonymous], IEEE TKDE SPECIAL IS
[6]  
Babu Babcock S, 2002, P 21 ACM SYMP PRINC
[7]  
Guha S., 1998, SIGMOD Record, V27, P73, DOI 10.1145/276305.276312
[8]  
Han J., 2012, Data Mining, P393, DOI [DOI 10.1016/B978-0-12-381479-1.00009-5, 10.1016/B978-0-12-381479-1.00009-5]
[9]  
Jin Che-Qing, 2004, Journal of Software, V15, P1172
[10]  
Nasraoui O, 2003, P 3 IEEE INT C DAT M, P19