NEW SINGULARITIES AND PERESTROIKAS OF FRONTS OF LINEAR WAVES

被引:5
作者
Bogaevsky, Ilya A. [1 ]
机构
[1] Independent Univ Moscow, Moscow 121002, Russia
关键词
Singularity; perestroika; front; contact structure; Legendre submanifold; Legendre fibration;
D O I
10.17323/1609-4514-2003-3-3-807-821
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The subject of the paper is the propagation of linear waves in plane and three-dimensional space. We describe some new (as compared with the ADE-classification) typical singularities and perestroikas of their fronts when the light hypersurface has conical singularities. Such singularities appear if the waves propagate in a non-homogeneous anisotropic medium and are controlled by a variational principle.
引用
收藏
页码:807 / 821
页数:15
相关论文
共 9 条
[1]  
Arnold V. I., 1988, Journal of Geometry and Physics, V5, P305, DOI 10.1016/0393-0440(88)90027-7
[2]  
Arnold V. I., 1990, MATH ITS APPL SOVIET, V62
[3]  
Arnold V. I., 2012, Singularities of Differentiable Maps, V1
[4]  
Arnold V. I., 1988, ENCYCL MATH SCI, V6, P5
[5]   Singularities of the propagation of short waves on the plane [J].
Bogaevskii, IA .
SBORNIK MATHEMATICS, 1995, 186 (11-12) :1581-1597
[6]  
Bogaevsky I. A., 1997, ARNOLD GELFAND MATH, P107
[7]  
Givental A. B., 1988, J SOVIET MATH, V52, p[55, 3246], DOI 10.1007/BF01095250
[8]  
Khesin B. A., 1990, ADV SOVIET MATH, V1, P105
[9]  
[No title captured]