Dual automorphism-invariant modules

被引:29
作者
Singh, Surjeet [1 ]
Srivastava, Ashish K. [1 ]
机构
[1] St Louis Univ, Dept Math & Comp Sci, St Louis, MO 63103 USA
关键词
Discrete modules; Lifting modules; Perfect ring; Pseudo-projective modules; Quasi-projective modules;
D O I
10.1016/j.jalgebra.2012.08.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A module M is called an automorphism-invariant module if every isomorphism between two essential submodules of M extends to an automorphism of M. This paper introduces the notion of dual of such modules. We call a module M to be a dual automorphism-invariant module if whenever K-1 and K-2 are small submodules of M, then any epimorphism eta : M/K-1 -> M/K-2 with small kernel lifts to an endomorphism phi of M. In this paper we give various examples of dual automorphism-invariant module and study its properties. In particular, we study abelian groups and prove that dual automorphism-invariant abelian groups must be reduced. It is shown that over a right perfect ring R, a lifting right R-module M is dual automorphism-invariant if and only if M is quasi-projective. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:262 / 275
页数:14
相关论文
共 11 条
[1]  
Bass H., 1960, T AM MATH SOC, V95, P466, DOI 10.1090/S0002-9947-1960-0157984-8
[2]   Continuous modules are clean [J].
Camillo, V. P. ;
Khurana, D. ;
Lam, T. Y. ;
Nicholson, W. K. ;
Zhou, Y. .
JOURNAL OF ALGEBRA, 2006, 304 (01) :94-111
[3]  
Clark J, 2006, FRONT MATH, P1
[4]  
FUCHS L, 1970, B SOC MATH FR, V98, P5
[5]  
Fuchs L., 1970, INFINITE ABELIAN GRO, V1
[6]  
Lee T.K., J ALGEBRA A IN PRESS
[7]   RINGS WHOSE SIMPLE MODULES ARE INJECTIVE [J].
MICHLER, GO ;
VILLAMAY.OE .
JOURNAL OF ALGEBRA, 1973, 25 (01) :185-201
[8]  
Mohamed S., 1977, Journal of the Australian Mathematical Society, Series A (Pure Mathematics), V24, P496
[9]  
Mohamed S. H., 1990, LONDON MATH SOC LECT, V147
[10]  
Singh S., CONT MATH A IN PRESS