Infinite Hidden Conditional Random Fields for Human Behavior Analysis

被引:30
作者
Bousmalis, Konstantinos [1 ]
Zafeiriou, Stefanos [1 ]
Morency, Louis-Philippe [3 ]
Pantic, Maja [1 ,2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England
[2] Univ Twente, Fac Elect Engn Math & Comp Sci, NL-7522 NB Enschede, Netherlands
[3] Univ So Calif, Inst Creat Technol, Playa Vista, CA 90094 USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Discriminative models; hidden conditional random fields; nonparametric Bayesian learning;
D O I
10.1109/TNNLS.2012.2224882
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hidden conditional random fields (HCRFs) are discriminative latent variable models that have been shown to successfully learn the hidden structure of a given classification problem (provided an appropriate validation of the number of hidden states). In this brief, we present the infinite HCRF (iHCRF), which is a nonparametric model based on hierarchical Dirichlet processes and is capable of automatically learning the optimal number of hidden states for a classification task. We show how we learn the model hyperparameters with an effective Markov-chain Monte Carlo sampling technique, and we explain the process that underlines our iHCRF model with the Restaurant Franchise Rating Agencies analogy. We show that the iHCRF is able to converge to a correct number of represented hidden states, and outperforms the best finite HCRFs-chosen via cross-validation-for the difficult tasks of recognizing instances of agreement, disagreement, and pain. Moreover, the iHCRF manages to achieve this performance in significantly less total training, validation, and testing time.
引用
收藏
页码:170 / 177
页数:8
相关论文
共 17 条
[1]  
[Anonymous], 2008, P 25 INT C MACHINE L
[2]  
[Anonymous], 2002, Manual and Investigators Guide
[3]  
[Anonymous], 2009, P 2009 3 INT C AFFEC
[4]  
[Anonymous], P INT C AFF COMP INT
[5]  
Beal MJ, 2002, ADV NEUR IN, V14, P577
[6]   Variational Inference for Dirichlet Process Mixtures [J].
Blei, David M. ;
Jordan, Michael I. .
BAYESIAN ANALYSIS, 2006, 1 (01) :121-143
[7]  
Bousmalis K., 2011, Proceedings 2011 IEEE International Conference on Automatic Face & Gesture Recognition (FG 2011), P746, DOI 10.1109/FG.2011.5771341
[8]   The Infinite Hidden Markov Random Field Model [J].
Chatzis, Sotirios P. ;
Tsechpenakis, Gabriel .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (06) :1004-1014
[9]  
Eyben F., 2009, 2009 3 INT C AFF COM, P1, DOI DOI 10.1109/ACII.2009.5349350
[10]  
Gunawardana Asela., 2005, Proceedings of Nineth European Conference on Speech Communication and Technology (EuroSpeech 2005), P1117