Limit theorems and governing equations for Levy walks

被引:23
作者
Magdziarz, M. [1 ]
Scheffler, H. P. [2 ]
Straka, P. [3 ]
Zebrowski, P. [4 ]
机构
[1] Wroclaw Univ Technol, Dept Math, PL-50370 Wroclaw, Poland
[2] Univ Siegen, Dept Math, D-57068 Siegen, Germany
[3] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[4] Int Inst Appl Syst Anal IIASA, Adv Syst Anal ASA Program, Laxenburg, Austria
关键词
Levy walk; Domain of attraction; Governing equation; ANOMALOUS DIFFUSION;
D O I
10.1016/j.spa.2015.05.014
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Levy Walk is the process with continuous sample paths which arises from consecutive linear motions of i.i.d. lengths with i.i.d. directions. Assuming speed 1 and motions in the domain of beta-stable attraction, we prove functional limit theorems and derive governing pseudo-differential equations for the law of the walker's position. Both Levy Walk and its limit process are continuous and ballistic in the case beta epsilon (0, 1). In the case beta epsilon (1, 2), the scaling limit of the process is beta-stable and hence discontinuous. This result is surprising, because the scaling exponent 1/beta on the process level is seemingly unrelated to the scaling exponent 3 - beta of the second moment. For = 2, the scaling limit is Brownian motion. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:4021 / 4038
页数:18
相关论文
共 32 条
  • [1] [Anonymous], 2002, FDN MODERN PROBABILI
  • [2] [Anonymous], 1991, SEARCHING BEHAV BEHA
  • [3] Ashbaugh M., 1992, PROBAB MATH STAT-POL, V13, P77
  • [4] Space-time fractional derivative operators
    Baeumer, B
    Meerschaert, MM
    Mortensen, J
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (08) : 2273 - 2282
  • [5] A Levy flight for light
    Barthelemy, Pierre
    Bertolotti, Jacopo
    Wiersma, Diederik S.
    [J]. NATURE, 2008, 453 (7194) : 495 - 498
  • [6] Becker-Kern P, 2004, ANN PROBAB, V32, P730
  • [7] Berg HC., 1993, Random Walks in Biology
  • [8] BERTOIN J., 1999, Lectures on Probability Theory and Statistics: Ecole d'Ete de Probabilites de Saint-Flour XXVII-1997, V1717, P1
  • [9] Billingsley Patrick, 1999, WILEY SERIES PROBABI
  • [10] TRANSPORT ASPECTS IN ANOMALOUS DIFFUSION - LEVY WALKS
    BLUMEN, A
    ZUMOFEN, G
    KLAFTER, J
    [J]. PHYSICAL REVIEW A, 1989, 40 (07) : 3964 - 3974