Universal linear optics

被引:845
作者
Carolan, Jacques [1 ,2 ]
Harrold, Christopher [1 ,2 ]
Sparrow, Chris [1 ,2 ,3 ]
Martin-Lopez, Enrique [4 ]
Russell, Nicholas J. [1 ,2 ]
Silverstone, Joshua W. [1 ,2 ]
Shadbolt, Peter J. [3 ]
Matsuda, Nobuyuki [5 ]
Oguma, Manabu [6 ]
Itoh, Mikitaka [6 ]
Marshall, Graham D. [1 ,2 ]
Thompson, Mark G. [1 ,2 ]
Matthews, Jonathan C. F. [1 ,2 ]
Hashimoto, Toshikazu [6 ]
O'Brien, Jeremy L. [1 ,2 ]
Laing, Anthony [1 ,2 ]
机构
[1] Univ Bristol, HH Wills Phys Lab, Ctr Quantum Photon, Bristol BS8 1UB, Avon, England
[2] Univ Bristol, Dept Elect & Elect Engn, Bristol BS8 1UB, Avon, England
[3] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England
[4] Nokia Technol, Cambridge CB3 0FA, England
[5] Nippon Telegraph & Tel NTT Corp, NTT Basic Res Labs, Atsugi, Kanagawa 2430198, Japan
[6] NTT Corp, NTT Device Technol Labs, Atsugi, Kanagawa 2430198, Japan
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”; 欧洲研究理事会;
关键词
QUANTUM INTERFERENCE; GUIDE; ENTANGLEMENT; REALIZATION; PHOTONS; VERIFICATION;
D O I
10.1126/science.aab3642
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Linear optics underpins fundamental tests of quantum mechanics and quantum technologies. We demonstrate a single reprogrammable optical circuit that is sufficient to implement all possible linear optical protocols up to the size of that circuit. Our six-mode universal system consists of a cascade of 15 Mach-Zehnder interferometers with 30 thermo-optic phase shifters integrated into a single photonic chip that is electrically and optically interfaced for arbitrary setting of all phase shifters, input of up to six photons, and their measurement with a 12-single-photon detector system. We programmed this system to implement heralded quantum logic and entangling gates, boson sampling with verification tests, and six-dimensional complex Hadamards. We implemented 100 Haar random unitaries with an average fidelity of 0.999 +/- 0.001. Our system can be rapidly reprogrammed to implement these and any other linear optical protocol, pointing the way to applications across fundamental science and quantum technologies.
引用
收藏
页码:711 / 716
页数:6
相关论文
共 65 条
[1]  
Aaronson S, 2014, QUANTUM INF COMPUT, V14, P1383
[2]  
Aaronson S, 2011, ACM S THEORY COMPUT, P333
[3]   Mutually unbiased bases and Hadamard matrices of order six [J].
Bengtsson, Ingemar ;
Bruzda, Wojciech ;
Ericsson, Asa ;
Larsson, Jan-Ake ;
Tadej, Wojciech ;
Zyczkowski, Karol .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (05)
[4]   Photonic Boson Sampling in a Tunable Circuit [J].
Broome, Matthew A. ;
Fedrizzi, Alessandro ;
Rahimi-Keshari, Saleh ;
Dove, Justin ;
Aaronson, Scott ;
Ralph, Timothy C. ;
White, Andrew G. .
SCIENCE, 2013, 339 (6121) :794-798
[5]   Resource-efficient linear optical quantum computation [J].
Browne, DE ;
Rudolph, T .
PHYSICAL REVIEW LETTERS, 2005, 95 (01)
[6]  
Carolan J, 2014, NAT PHOTONICS, V8, P621, DOI [10.1038/nphoton.2014.152, 10.1038/NPHOTON.2014.152]
[7]  
Chuang IL, 1997, J MOD OPTIC, V44, P2455, DOI 10.1080/095003497152609
[8]  
Crespi A, 2013, NAT PHOTONICS, V7, P545, DOI [10.1038/nphoton.2013.112, 10.1038/NPHOTON.2013.112]
[9]   Integrated photonic quantum gates for polarization qubits [J].
Crespi, Andrea ;
Ramponi, Roberta ;
Osellame, Roberto ;
Sansoni, Linda ;
Bongioanni, Irene ;
Sciarrino, Fabio ;
Vallone, Giuseppe ;
Mataloni, Paolo .
NATURE COMMUNICATIONS, 2011, 2
[10]   Realization of a photonic controlled-NOT gate sufficient for quantum computation [J].
Gasparoni, S ;
Pan, JW ;
Walther, P ;
Rudolph, T ;
Zeilinger, A .
PHYSICAL REVIEW LETTERS, 2004, 93 (02) :020504-1