Biodegradation of Soluble Organic Matter as Affected by Land-Use and Soil Depth

被引:24
|
作者
Toosi, Ehsan R. [1 ]
Clinton, Peter W. [2 ]
Beare, Michael H. [3 ]
Norton, David A. [1 ]
机构
[1] Univ Canterbury, Sch Froestry, Christchurch 1, New Zealand
[2] SCION, Christchurch, New Zealand
[3] Canterbury Agr & Sci Ctr, New Zealand Inst Plant & Food Res, Christchurch, New Zealand
关键词
TERRESTRIAL ECOSYSTEMS; MICROBIAL BIOMASS; NITROGEN POOLS; PASTORAL SOILS; CARBON; FOREST; DYNAMICS; BIOAVAILABILITY; QUALITY; MINERALIZATION;
D O I
10.2136/sssaj2011.0437
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Determining the biodegradability of soluble organic matter (OM) is important in understanding its role in biogeochemical cycles. We evaluated C and N biodegradation for two frequently studied fractions of soluble OM, water (0.01 mol L-1 CaCl2) and salt (0.5 mol L-1 K2SO4) extractable organic matter (WEOM and SEOM, respectively). Soil samples were collected from topsoil (0-20 cm) and subsoil (60-80 cm) at four sites across a long-term established land-use sequence. The biodegradation dynamics of WEOM and SEOM were determined during a 90-d laboratory incubation using a two-pool model. Compared with SEOM, the amount of C and N of WEOM further varied with land-use and soil depth. The proportion of biodegradable C and N was considerably larger for WEOM than SEOM, consistent with greater delta C-13 (close to soil organic matter [SOM]), C/N ratio, and proportion of aromatic compounds (determined by specific ultraviolet absorbance at 254 nm [SUVA(254)]) for SEOM. For both C and N, the turnover of the slowly biodegradable pool explained the lower biodegradability of SEOM. Depletion in C-13 along with an increase in SUVA(254) demonstrated a preferential consumption of labile compounds that were mainly mineralized during the initial 16 d of the incubation. The proportionally lower biodegraded C than N for both fractions was due to the longer half-life of the slowly biodegradable C. Both soil depth (only for WEOM) and land-use affected the proportion of the biodegradable pools (fast vs. slow) of C and N. In addition, land-use strongly influenced the turnover rate of the fast biodegradable pool. There was no evidence that soluble organic C and N from subsoil are less biodegradable than those of topsoil.
引用
收藏
页码:1667 / 1677
页数:11
相关论文
共 50 条
  • [41] Soil organic carbon and soil erodibility response to various land-use changes in northern Thailand
    Arunrat, Noppol
    Sereenonchai, Sukanya
    Kongsurakan, Praeploy
    Hatano, Ryusuke
    CATENA, 2022, 219
  • [42] Modeling the effects of land-use optimization on the soil organic carbon sequestration potential
    Yao Jingtao
    Kong Xiangbin
    JOURNAL OF GEOGRAPHICAL SCIENCES, 2018, 28 (11) : 1641 - 1658
  • [43] Dissolved organic matter in surface runoff in the Loess Plateau of China: The role of rainfall events and land-use
    Li, Zhongwu
    Peng, Hao
    Xie, Binggeng
    Liu, Chun
    Nie, Xiaodong
    Wang, Danyang
    Huang, Mei
    Xiao, Haibing
    Shi, Lin
    Zhang, Xuqin
    Jiang, Jieyu
    HYDROLOGICAL PROCESSES, 2020, 34 (06) : 1446 - 1459
  • [44] Effects of land use changes on the spectroscopic characterization of hot-water extractable organic matter along a chronosequence: Correlations with soil enzyme activity
    Wang, Quan-Ying
    Wang, Yang
    Wang, Qi-Cun
    Liu, Qiang
    Lv, Dui-An
    Guan, Jiu-Nian
    Liu, Jing-Shuang
    EUROPEAN JOURNAL OF SOIL BIOLOGY, 2013, 58 : 8 - 12
  • [45] Differences in Soluble Organic Matter After 23 Years of Contrasting Soil Management
    Toosi, Ehsan R.
    Castellano, Michael J.
    Singer, Jeremy W.
    Mitchell, David C.
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2012, 76 (02) : 628 - 637
  • [46] Soil moisture integrates the influence of land-use and season on soil microbial community composition in the Ethiopian highlands
    Ahmed, Iftekhar U.
    Mengistie, Hodaddis K.
    Godbold, Douglas L.
    Sanden, Hans
    APPLIED SOIL ECOLOGY, 2019, 135 : 85 - 90
  • [47] Organic Matter Associated with Soil Aggregate Fractions of a Black Soil in Northeast China: Impacts of Land-Use Change and Long-Term Fertilization
    Li, Haibo
    Han, Xiaozeng
    You, Mengyang
    Xing, Baoshan
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2015, 46 (04) : 405 - 423
  • [48] Response of soil organic carbon to land-use change after farmland abandonment in the karst desertification control
    Mu, Yating
    Ye, Runcheng
    Xiong, Kangning
    Li, Yue
    Liu, Ziqi
    Long, Yidong
    Cai, Lulu
    Zhou, Qingping
    PLANT AND SOIL, 2024, 501 (1-2) : 595 - 610
  • [49] Photoassimilated carbon allocation in a wheat plant-soil system as affected by soil fertility and land-use history
    Chowdhury, Saikat
    Farrell, Mark
    Bolan, Nanthi
    PLANT AND SOIL, 2014, 383 (1-2) : 173 - 189
  • [50] Emerging land use practices rapidly increase soil organic matter
    Machmuller, Megan B.
    Kramer, Marc G.
    Cyle, Taylor K.
    Hill, Nick
    Hancock, Dennis
    Thompson, Aaron
    NATURE COMMUNICATIONS, 2015, 6