Rotation and entropy

被引:31
作者
Geller, W [1 ]
Misiurewicz, M [1 ]
机构
[1] Indiana Univ Purdue Univ, Dept Math Sci, Indianapolis, IN 46202 USA
关键词
rotation sets; entropy;
D O I
10.1090/S0002-9947-99-02344-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a given map f : X --> X and an observable phi : X --> R-d; rotation vectors are the limits of ergodic averages of phi. We study which part of the topological entropy of f is associated to a given rotation vector and which part is associated with many rotation vectors. According to this distinction, we introduce directional and lost entropies. We discuss their properties in the general case and analyze them more closely for subshifts of finite type and circle maps.
引用
收藏
页码:2927 / 2948
页数:22
相关论文
共 14 条
[1]  
Alseda L., 1993, Combinatorial Dynamics and Entropy in Dimension One
[2]   New order for periodic orbits of interval maps [J].
Blokh, A ;
Misiurewicz, M .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1997, 17 :565-574
[3]  
BOTELHO F, 1991, PAC J MATH, V151, P1
[4]   TOPOLOGICAL ENTROPY FOR NONCOMPACT SETS [J].
BOWEN, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 184 (OCT) :125-136
[5]  
Denker M., 1976, LECT NOTES MATH, V527
[6]   Asymptotic entropy, periodic orbits, and pseudo-Anosov maps [J].
Kwapisz, J ;
Swanson, R .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1998, 18 :425-439
[7]  
Kwapisz J., 1995, THESIS SUNY STONY BR
[8]   HORSESHOES, ENTROPY AND PERIODS FOR GRAPH MAPS [J].
LLIBRE, J ;
MISIUREWICZ, M .
TOPOLOGY, 1993, 32 (03) :649-664
[9]   THE WEIGHT-PER-SYMBOL POLYTOPE AND SCAFFOLDS OF INVARIANTS ASSOCIATED WITH MARKOV-CHAINS [J].
MARCUS, B ;
TUNCEL, S .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1991, 11 :129-180
[10]   ENTROPY OF PIECEWISE MONOTONE MAPPINGS [J].
MISIUREWICZ, M ;
SZLENK, W .
STUDIA MATHEMATICA, 1980, 67 (01) :45-63