Measurement-device-independent quantum secret sharing with hyper-encoding

被引:32
作者
Ju, Xing-Xing [1 ,4 ]
Zhong, Wei [4 ]
Sheng, Yu-Bo [2 ,3 ,4 ]
Zhou, Lan [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Sci, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Elect & Opt Engn, Nanjing 210023, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Coll Flexible Elect Future Technol, Nanjing 210023, Peoples R China
[4] Nanjing Univ Posts & Telecommun, Inst Quantum Informat & Technol, Nanjing 210003, Peoples R China
基金
中国国家自然科学基金;
关键词
measurement-device-independent quantum secret sharing; hyper-encoding technology; cross-Kerr nonlinearity; hyper-entangled Greenberger-Horne-Zeilinger state analysis; KEY DISTRIBUTION; COMMUNICATION;
D O I
10.1088/1674-1056/ac70bb
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum secret sharing (QSS) is a typical multi-party quantum communication mode, in which the key sender splits a key into several parts and the participants can obtain the key by cooperation. Measurement-device-independent quantum secret sharing (MDI-QSS) is immune to all possible attacks from measurement devices and can greatly enhance QSS's security in practical applications. However, previous MDI-QSS's key generation rate is relatively low. Here, we adopt the polarization-spatial-mode hyper-encoding technology in the MDI-QSS, which can increase single photon's channel capacity. Meanwhile, we use the cross-Kerr nonlinearity to realize the complete hyper-entangled Greenberger-Horne-Zeilinger state analysis. Both above factors can increase MDI-QSS's key generation rate by about 10(3). The proposed hyper-encoded MDI-QSS protocol may be useful for future multiparity quantum communication applications.
引用
收藏
页数:7
相关论文
共 76 条
  • [21] Quantum secret sharing
    Hillery, M
    Buzek, V
    Berthiaume, A
    [J]. PHYSICAL REVIEW A, 1999, 59 (03): : 1829 - 1834
  • [22] Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration
    Huang, Luyu
    Zhang, Yichen
    Yu, Song
    [J]. CHINESE PHYSICS LETTERS, 2021, 38 (04)
  • [23] Quantum key distribution with high loss: Toward global secure communication
    Hwang, WY
    [J]. PHYSICAL REVIEW LETTERS, 2003, 91 (05) : 579011 - 579014
  • [24] Device Calibration Impacts Security of Quantum Key Distribution
    Jain, Nitin
    Wittmann, Christoffer
    Lydersen, Lars
    Wiechers, Carlos
    Elser, Dominique
    Marquardt, Christoph
    Makarov, Vadim
    Leuchs, Gerd
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (11)
  • [25] Differential Phase Shift Quantum Secret Sharing Using a Twin Field with Asymmetric Source Intensities
    Jia, Zhao-Ying
    Gu, Jie
    Li, Bing-Hong
    Yin, Hua-Lei
    Chen, Zeng-Bing
    [J]. ENTROPY, 2021, 23 (06)
  • [26] Quantum entanglement for secret sharing and secret splitting
    Karlsson, A
    Koashi, M
    Imoto, N
    [J]. PHYSICAL REVIEW A, 1999, 59 (01) : 162 - 168
  • [27] Detection and quantification of entanglement with measurement-device-independent and universal entanglement witness*
    Ke, Zhi-Jin
    Wang, Yi-Tao
    Yu, Shang
    Liu, Wei
    Meng, Yu
    Li, Zhi-Peng
    Wang, Hang
    Li, Qiang
    Xu, Jin-Shi
    Xiao, Ya
    Tang, Jian-Shun
    Li, Chuan-Feng
    Guo, Guang-Can
    [J]. CHINESE PHYSICS B, 2020, 29 (08)
  • [28] Kwek L-C., 2021, AAPPS Bull, V31, P1, DOI [10.1007/s43673-021-00017-0, DOI 10.1007/S43673-021-00017-0]
  • [29] Long-distance twin-field quantum key distribution with entangled sources
    Li, Bing-Hong
    Xie, Yuan-Mei
    Li, Zhao
    Weng, Chen-Xun
    Li, Chen-Long
    Yin, Hua-Lei
    Chen, Zeng-Bing
    [J]. OPTICS LETTERS, 2021, 46 (22) : 5529 - 5532
  • [30] Quantum secure direct communication based on single-photon Bell-state measurement
    Li, Tao
    Long, Gui-Lu
    [J]. NEW JOURNAL OF PHYSICS, 2020, 22 (06):