We propose a nonparametric method to study which characteristics provide incremental information for the cross-section of expected returns. We use the adaptive group LASSO to select characteristics and to estimate how selected characteristics affect expected returns nonparametrically. Our method can handle a large number of characteristics and allows for a flexible functional form. Our implementation is insensitive to outliers. Many of the previously identified return predictors don't provide incremental information for expected returns, and nonlinearities are important. We study our method's properties in simulations and find large improvements in both model selection and prediction compared to alternative selection methods.
机构:
Duke Univ, Fuqua Sch Business, Durham, NC 27708 USA
NBER, Cambridge, MA 02138 USADuke Univ, Fuqua Sch Business, Durham, NC 27708 USA
Brandt, Michael W.
Santa-Clara, Pedro
论文数: 0引用数: 0
h-index: 0
机构:
NBER, Cambridge, MA 02138 USA
Univ Calif Los Angeles, Anderson Sch, Los Angeles, CA 90024 USA
Univ Nova Lisboa, P-1200 Lisbon, PortugalDuke Univ, Fuqua Sch Business, Durham, NC 27708 USA
Santa-Clara, Pedro
Valkanov, Rossen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Rady Sch, San Diego, CA USADuke Univ, Fuqua Sch Business, Durham, NC 27708 USA
机构:
Duke Univ, Fuqua Sch Business, Durham, NC 27708 USA
NBER, Cambridge, MA 02138 USADuke Univ, Fuqua Sch Business, Durham, NC 27708 USA
Brandt, Michael W.
Santa-Clara, Pedro
论文数: 0引用数: 0
h-index: 0
机构:
NBER, Cambridge, MA 02138 USA
Univ Calif Los Angeles, Anderson Sch, Los Angeles, CA 90024 USA
Univ Nova Lisboa, P-1200 Lisbon, PortugalDuke Univ, Fuqua Sch Business, Durham, NC 27708 USA
Santa-Clara, Pedro
Valkanov, Rossen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Rady Sch, San Diego, CA USADuke Univ, Fuqua Sch Business, Durham, NC 27708 USA