MODEL SELECTION FOR QUANTUM HOMODYNE TOMOGRAPHY

被引:2
|
作者
Kahn, Jonas [1 ]
机构
[1] Univ Paris 11, Dept Math, F-91405 Orsay, France
关键词
Density matrix; model selection; pattern functions estimator; penalized maximum likelihood estimator; penalized projection estimators; quantum calibration; quantum tomography; wavelet estimator; Wigner function; DENSITY-MATRIX;
D O I
10.1051/ps:2008017
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper deals with a non-parametric problem coming from physics, namely quantum tomography. That consists in determining the quantum state of a mode of light through a homodyne measurement. We apply several model selection procedures: penalized projection estimators, where we may use pattern functions or wavelets, and penalized maximum likelihood estimators. In all these cases, we get oracle inequalities. In the former we also have a polynomial rate of convergence for the non-parametric problem. We finish the paper with applications of similar ideas to the calibration of a photocounter, a measurement apparatus counting the number of photons in a beam. Here the mathematical problem reduces similarly to a non-parametric missing data problem. We again get oracle inequalities, and better speed if the photocounter is good.
引用
收藏
页码:363 / 399
页数:37
相关论文
共 50 条
  • [1] DENSITY MATRIX ESTIMATION IN QUANTUM HOMODYNE TOMOGRAPHY
    Wang, Yazhen
    Xu, Chenliang
    STATISTICA SINICA, 2015, 25 (03) : 953 - 973
  • [2] High-dimensional methods for quantum homodyne tomography
    Mosco, Nicola
    Maccone, Lorenzo
    PHYSICS LETTERS A, 2022, 449
  • [3] State estimation in quantum homodyne tomography with noisy data
    Aubry, Jean-Marie
    Butucea, Cristina
    Meziani, Katia
    INVERSE PROBLEMS, 2009, 25 (01)
  • [4] Experimental quantum tomography of a homodyne detector
    Grandi, Samuele
    Zavatta, Alessandro
    Bellini, Marco
    Paris, Matteo G. A.
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [5] Multichannel homodyne detection for quantum optical tomography
    Roumpos, Georgios
    Cundiff, Steven T.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2013, 30 (05) : 1303 - 1316
  • [6] Nonparametric goodness-of fit testing in quantum homodyne tomography with noisy data
    Meziani, Katia
    ELECTRONIC JOURNAL OF STATISTICS, 2008, 2 : 1195 - 1223
  • [7] Pulsed homodyne Gaussian quantum tomography with low detection efficiency
    Esposito, M.
    Benatti, F.
    Floreanini, R.
    Olivares, S.
    Randi, F.
    Titimbo, K.
    Pividori, M.
    Novelli, F.
    Cilento, F.
    Parmigiani, F.
    Fausti, D.
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [8] Bayesian nonparametric estimation for Quantum Homodyne Tomography
    Naulet, Zacharie
    Barat, Eric
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 3595 - 3632
  • [9] Rank-based model selection for multiple ions quantum tomography
    Guta, Madalin
    Kypraios, Theodore
    Dryden, Ian
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [10] Bayesian homodyne and heterodyne tomography
    Chapman, Joseph C.
    Lukens, Joseph M.
    Qi, Bing
    Pooser, Raphael C.
    Peters, Nicholas A.
    OPTICS EXPRESS, 2022, 30 (09) : 15184 - 15200