FIXED-PARAMETER TRACTABILITY OF MULTICUT PARAMETERIZED BY THE SIZE OF THE CUTSET

被引:58
作者
Marx, Daniel [1 ]
Razgon, Igor [2 ]
机构
[1] Hungarian Acad Sci MTA SZTAKI, Inst Comp Sci & Control, Budapest, Hungary
[2] Univ London, Dept Comp Sci & Informat Syst, Birkbeck, London, England
基金
欧洲研究理事会;
关键词
parameterized complexity; graph separation problems; multicut; ALGORITHMS; GRAPH; COMPLEXITY; HARDNESS;
D O I
10.1137/110855247
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given an undirected graph G, a collection {(s(1), t(1)),..., (s(k), t(k))} of pairs of vertices, and an integer p, the EDGE MULTICUT problem asks if there is a set S of at most p edges such that the removal of S disconnects every s(i) from the corresponding t(i). VERTEX MULTICUT is the analogous problem where S is a set of at most p vertices. Our main result is that both problems can be solved in time 2(O)(p(3))center dot n(O(1)), i.e., fixed-parameter tractable parameterized by the size p of the cutset in the solution. By contrast, it is unlikely that an algorithm with running time of the form f(p)center dot n(O(1)) exists for the directed version of the problem, as we show it to be W[1]-hard parameterized by the size of the cutset.
引用
收藏
页码:355 / 388
页数:34
相关论文
共 50 条
[21]   Fixed-parameter tractability and lower bounds for stabbing problems [J].
Giannopoulos, Panos ;
Knauer, Christian ;
Rote, Guenter ;
Werner, Daniel .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2013, 46 (07) :839-860
[22]   Fixed-parameter tractability, definability, and model-checking [J].
Flum, J ;
Grohe, M .
SIAM JOURNAL ON COMPUTING, 2001, 31 (01) :113-145
[23]   Geometric Clustering: Fixed-Parameter Tractability and Lower Bounds with Respect to the Dimension [J].
Cabello, Sergio ;
Giannopoulos, Panos ;
Knauer, Christian ;
Marx, Daniel ;
Rote, Guenter .
ACM TRANSACTIONS ON ALGORITHMS, 2011, 7 (04)
[24]   Saving colors and Max Coloring: Some fixed-parameter tractability results [J].
Escoffier, Bruno .
THEORETICAL COMPUTER SCIENCE, 2019, 758 :30-41
[25]   Fixed-Parameter Tractability of Counting Small Minimum (S, T)-Cuts [J].
Berge, Pierre ;
Mouscadet, Benjamin ;
Rimmel, Arpad ;
Tomasik, Joanna .
GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2019), 2019, 11789 :79-92
[26]   Fixed-parameter tractability for subset feedback set problems with parity constraints [J].
Kakimura, Naonori ;
Kawarabayashi, Ken-ichi .
THEORETICAL COMPUTER SCIENCE, 2015, 576 :61-76
[27]   Semantic Width and the Fixed-Parameter Tractability of Constraint Satisfaction Problems [J].
Chen, Hubie ;
Gottlob, Georg ;
Lanzinger, Matthias ;
Pichler, Reinhard .
PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, :1726-1733
[28]   FIXED-PARAMETER TRACTABILITY AND COMPLETENESS .1. BASIC RESULTS [J].
DOWNEY, RG ;
FELLOWS, MR .
SIAM JOURNAL ON COMPUTING, 1995, 24 (04) :873-921
[29]   Even More Effort Towards Improved Bounds and Fixed-Parameter Tractability for Multiwinner Rules [J].
Gupta, Sushmita ;
Jain, Pallavi ;
Saurabh, Saket ;
Talmon, Nimrod .
ALGORITHMICA, 2023, 85 (12) :3717-3740
[30]   Drawing (Complete) Binary Tanglegrams Hardness, Approximation, Fixed-Parameter Tractability [J].
Buchin, Kevin ;
Buchin, Maike ;
Byrka, Jaroslaw ;
Noellenburg, Martin ;
Okamoto, Yoshio ;
Silveira, Rodrigo I. ;
Wolff, Alexander .
ALGORITHMICA, 2012, 62 (1-2) :309-332