Fractional photo-current dependence of graphene quantum dots prepared from carbon nanotubes

被引:14
作者
Kundu, Sumana [1 ,2 ]
Ghosh, Sujoy [3 ]
Fralaide, Michael [3 ]
Narayanan, T. N. [4 ]
Pillai, Vijayamohanan K. [1 ,2 ,5 ]
Talapatra, Saikat [2 ]
机构
[1] CSIR Cent Electrochem Res Inst CECRI, Karaikkudi 630006, Tamil Nadu, India
[2] Acad Sci & Innovat Res, Madras 600113, Tamil Nadu, India
[3] So Illinois Univ, Dept Phys, Carbondale, IL 62901 USA
[4] Tata Inst Fundamental Res, Ctr Interdisciplinary Sci, Hyderabad 500075, Andhra Pradesh, India
[5] CSIR Natl Chem Lab, Pune 411008, Maharashtra, India
关键词
GRAPHITE;
D O I
10.1039/c5cp03306c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report on the photo-conductivity studies of chemically synthesized graphene quantum dots (GQDs) of average size 12 nm obtained by the oxidative acid treatment of MWCNTs. The dependence of photocurrent I-ph (I-ph = I-ill - I-dark) on the laser intensity P under a wide range of laser intensities (5 mW <= P <= 60 mW) shows a fractional power dependence of I-ph on light intensity. The temperature dependence (300 K < T < 50 K) of I-ph observed in thin films of these GQDs indicates that in the higher temperature region (T > similar to 100 K), as the temperature increases, the number of thermally generated carriers increase resulting in increased I-ph. At sufficiently low temperatures (T <= 100 K), a constant I-ph is observed, indicating a constant photocarrier density. Such a behavior is typically observed in many photoactive disordered semiconductors, which are often used in a variety of applications. We believe that the investigations presented here will enhance our understanding of the photocurrent generation phenomenon in chemically obtained GQDs.
引用
收藏
页码:24566 / 24569
页数:4
相关论文
共 21 条
[1]   Graphene Quantum Dots [J].
Bacon, Mitchell ;
Bradley, Siobhan J. ;
Nann, Thomas .
PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2014, 31 (04) :415-428
[2]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[3]   Graphene at the Edge: Stability and Dynamics [J].
Girit, Caglar Oe ;
Meyer, Jannik C. ;
Erni, Rolf ;
Rossell, Marta D. ;
Kisielowski, C. ;
Yang, Li ;
Park, Cheol-Hwan ;
Crommie, M. F. ;
Cohen, Marvin L. ;
Louie, Steven G. ;
Zettl, A. .
SCIENCE, 2009, 323 (5922) :1705-1708
[4]   Size-Controllable and Low-Cost Fabrication of Graphene Quantum Dots Using Thermal Plasma Jet [J].
Kim, Juhan ;
Suh, Jung Sang .
ACS NANO, 2014, 8 (05) :4190-4196
[5]  
Konstantatos G, 2012, NAT NANOTECHNOL, V7, P363, DOI [10.1038/nnano.2012.60, 10.1038/NNANO.2012.60]
[6]   Synthesis of N, F and S co-doped graphene quantum dots [J].
Kundu, Sumana ;
Yadav, Ram Manohar ;
Narayanan, T. N. ;
Shelke, Manjusha V. ;
Vajtai, Robert ;
Ajayan, P. M. ;
Pillai, Vijayamohanan K. .
NANOSCALE, 2015, 7 (27) :11515-11519
[7]   Focusing on luminescent graphene quantum dots: current status and future perspectives [J].
Li, Lingling ;
Wu, Gehui ;
Yang, Guohai ;
Peng, Juan ;
Zhao, Jianwei ;
Zhu, Jun-Jie .
NANOSCALE, 2013, 5 (10) :4015-4039
[8]   Graphene photodetectors for high-speed optical communications [J].
Mueller, Thomas ;
Xia, Fengnian ;
Avouris, Phaedon .
NATURE PHOTONICS, 2010, 4 (05) :297-301
[9]   Graphene Quantum Dots Derived from Carbon Fibers [J].
Peng, Juan ;
Gao, Wei ;
Gupta, Bipin Kumar ;
Liu, Zheng ;
Romero-Aburto, Rebeca ;
Ge, Liehui ;
Song, Li ;
Alemany, Lawrence B. ;
Zhan, Xiaobo ;
Gao, Guanhui ;
Vithayathil, Sajna Antony ;
Kaipparettu, Benny Abraham ;
Marti, Angel A. ;
Hayashi, Takuya ;
Zhu, Jun-Jie ;
Ajayan, Pulickel M. .
NANO LETTERS, 2012, 12 (02) :844-849
[10]   Detection of individual gas molecules adsorbed on graphene [J].
Schedin, F. ;
Geim, A. K. ;
Morozov, S. V. ;
Hill, E. W. ;
Blake, P. ;
Katsnelson, M. I. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (09) :652-655