25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium-Ion Batteries

被引:1429
作者
McDowell, Matthew T. [1 ]
Lee, Seok Woo [1 ]
Nix, William D. [1 ]
Cui, Yi [1 ,1 ,2 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
基金
美国国家科学基金会;
关键词
lithium-ion batteries; silicon anode; phase transformations; in situ TEM; energy storage; IN-SITU TEM; SOLID-ELECTROLYTE INTERPHASE; DIFFUSION-INDUCED STRESS; SIZE-DEPENDENT FRACTURE; X-RAY-DIFFRACTION; ELECTROCHEMICAL LITHIATION; CRYSTALLINE SILICON; 1ST PRINCIPLES; THIN-FILMS; STRUCTURAL EVOLUTION;
D O I
10.1002/adma.201301795
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Alloying anodes such as silicon are promising electrode materials for next-generation high energy density lithium-ion batteries because of their ability to reversibly incorporate a high concentration of Li atoms. However, alloying anodes usually exhibit a short cycle life due to the extreme volumetric and structural changes that occur during lithium insertion/extraction; these transformations cause mechanical fracture and exacerbate side reactions. To solve these problems, there has recently been significant attention devoted to creating silicon nanostructures that can accommodate the lithiation-induced strain and thus exhibit high Coulombic efficiency and long cycle life. In parallel, many experiments and simulations have been conducted in an effort to understand the details of volumetric expansion, fracture, mechanical stress evolution, and structural changes in silicon nanostructures. The fundamental materials knowledge gained from these studies has provided guidance for designing optimized Si electrode structures and has also shed light on the factors that control large-volume change solid-state reactions. In this paper, we review various fundamental studies that have been conducted to understand structural and volumetric changes, stress evolution, mechanical properties, and fracture behavior of nanostructured Si anodes for lithium-ion batteries and compare the reaction process of Si to other novel anode materials.
引用
收藏
页码:4966 / 4984
页数:19
相关论文
共 145 条
[1]   Fracture of nanostructured Sn/C anodes during Li-insertion [J].
Aifantis, Katerina E. ;
Haycock, Meghan ;
Sanders, Paul ;
Hackney, Stephen A. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 529 :55-61
[2]  
[Anonymous], 1996, USABC EL VEH BATT TE
[3]   Nanoscale mapping of ion diffusion in a lithium-ion battery cathode [J].
Balke, N. ;
Jesse, S. ;
Morozovska, A. N. ;
Eliseev, E. ;
Chung, D. W. ;
Kim, Y. ;
Adamczyk, L. ;
Garcia, R. E. ;
Dudney, N. ;
Kalinin, S. V. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :749-754
[4]   Real Space Mapping of Li-Ion Transport in Amorphous Si Anodes with Nanometer Resolution [J].
Balke, Nina ;
Jesse, Stephen ;
Kim, Yoongu ;
Adamczyk, Leslie ;
Tselev, Alexander ;
Ivanov, Ilia N. ;
Dudney, Nancy J. ;
Kalinin, Sergei V. .
NANO LETTERS, 2010, 10 (09) :3420-3425
[5]   ANISOTROPIC ETCHING OF SILICON [J].
BEAN, KE .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1978, 25 (10) :1185-1193
[6]   Colossal reversible volume changes in lithium alloys [J].
Beaulieu, LY ;
Eberman, KW ;
Turner, RL ;
Krause, LJ ;
Dahn, JR .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (09) :A137-A140
[7]   Reaction of Li with alloy thin films studied by in situ AFM [J].
Beaulieu, LY ;
Hatchard, TD ;
Bonakdarpour, A ;
Fleischauer, MD ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (11) :A1457-A1464
[8]   The electrochemical reaction of lithium with tin studied by in situ AFM [J].
Beaulieu, LY ;
Beattie, SD ;
Hatchard, TD ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (04) :A419-A424
[9]   Cohesive modeling of crack nucleation in a cylindrical electrode under axisymmetric diffusion induced stresses [J].
Bhandakkar, Tanmay K. ;
Gao, Huajian .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2011, 48 (16-17) :2304-2309
[10]   Cohesive modeling of crack nucleation under diffusion induced stresses in a thin strip: Implications on the critical size for flaw tolerant battery electrodes [J].
Bhandakkar, Tanmay K. ;
Gao, Huajian .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2010, 47 (10) :1424-1434