GENERALIZED DERIVATIONS ON IDEALS OF PRIME RINGS

被引:17
|
作者
Albas, Emine [1 ]
机构
[1] Ege Univ, Fac Sci, Dept Math, TR-35100 Izmir, Turkey
关键词
prime ring; derivation; generalized polynomial; generalized derivation;
D O I
10.18514/MMN.2013.499
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a prime ring. By a generalized derivation we mean an additive mapping g : R -> R such that g(xy) = g(x)y + xd(y) for all x, y is an element of R where d is a derivation of R. In the present paper our main goal is to generalize some results concerning derivations of prime rings to generalized derivations of prime rings.
引用
收藏
页码:3 / 9
页数:7
相关论文
共 50 条
  • [1] On generalized derivations and Jordan ideals of prime rings
    Sandhu, Gurninder S.
    Davvaz, Bijan
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (01) : 227 - 233
  • [2] Generalized derivations on Lie ideals in prime rings
    Dhara, Basudeb
    Kar, Sukhendu
    Mondal, Sachhidananda
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (01) : 179 - 190
  • [3] Generalized derivations on Lie ideals in prime rings
    Basudeb Dhara
    Sukhendu Kar
    Sachhidananda Mondal
    Czechoslovak Mathematical Journal, 2015, 65 : 179 - 190
  • [4] On generalized derivations and Jordan ideals of prime rings
    Gurninder S. Sandhu
    Bijan Davvaz
    Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 227 - 233
  • [5] NOTES ON GENERALIZED DERIVATIONS ON LIE IDEALS IN PRIME RINGS
    Dhara, Basudeb
    De Filippis, Vincenzo
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (03) : 599 - 605
  • [6] Generalized Derivations Commuting on Lie Ideals in Prime Rings
    Dhara B.
    Kar S.
    Kuila S.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2023, 69 (1) : 159 - 181
  • [7] A result on generalized derivations on Lie ideals in prime rings
    Dhara B.
    Kar S.
    Mondal S.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2013, 54 (2): : 677 - 682
  • [8] Prime Rings with Generalized Derivations on Right Ideals
    Demir, C.
    Argac, N.
    ALGEBRA COLLOQUIUM, 2011, 18 : 987 - 998
  • [9] On generalized (α,β)-derivations and Lie ideals of prime rings
    Sandhu, Gurninder S.
    Ali, Shakir
    Boua, Abdelkarim
    Kumar, Deepak
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (01) : 499 - 513
  • [10] Commuting and Centralizing Generalized Derivations on Lie Ideals in Prime Rings
    De Filippis, V.
    Rania, F.
    MATHEMATICAL NOTES, 2010, 88 (5-6) : 748 - 758