On the integrability of new examples of two-dimensional Hamiltonian systems in curved spaces

被引:5
作者
Elmandouh, A. . A. . [1 ,2 ]
机构
[1] King Faisal Univ, Dept Math & Stat, Coll Sci, POB 400, Al Hasa 31982, Saudi Arabia
[2] Mansoura Univ, Dept Math, Fac Sci, Mansoura 35516, Egypt
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2020年 / 90卷
关键词
Integrability; Hamiltonian systems; Differential Galois theory; Morales-Ramis theory; RIGID-BODY DYNAMICS; 1ST INTEGRALS; NONINTEGRABILITY; PARTICLE;
D O I
10.1016/j.cnsns.2020.105368
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we inspect the integrability of a natural Hamiltonian system interpreted physically as the motion of a particle in the Euclidean plane under the effect of conservative forces derived from a certain type of a non-homogeneous potential. We announce the necessary conditions for its integrability by using the differential Galois theorem. We present three examples to clarify the applicability of the obtained results is easy and efficacious. Some of these examples restore the previous results in the literature, and one of them gives a new integrable case describing a generalization of the well-known Swinging Atwood machine. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 35 条
[1]   Nonintegrability of the Armbruster-Guckenheimer-Kim Quartic Hamiltonian Through Morales-Ramis Theory [J].
Acosta-Humanez, P. ;
Alvarez-Ramirez, M. ;
Stuchi, T. J. .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2018, 17 (01) :78-96
[2]   CHAOTIC DYNAMICS IN SYSTEMS WITH SQUARE SYMMETRY [J].
ARMBRUSTER, D ;
GUCKENHEIMER, J ;
KIM, S .
PHYSICS LETTERS A, 1989, 140 (7-8) :416-420
[3]  
Babelon O, 2003, Introduction to Classical Integrable Systems, DOI DOI 10.1017/CBO9780511535024
[4]   Darboux integrability of the stretch-twist-fold flow [J].
Bao, Jianghong ;
Yang, Qigui .
NONLINEAR DYNAMICS, 2014, 76 (01) :797-807
[5]   INTEGRABLE HAMILTONIAN-SYSTEMS AND THE PAINLEVE PROPERTY [J].
BOUNTIS, T ;
SEGUR, H ;
VIVALDI, F .
PHYSICAL REVIEW A, 1982, 25 (03) :1257-1264
[6]   Integrability of Hamiltonian systems with homogeneous potentials of degree zero [J].
Casale, Guy ;
Duval, Guillaume ;
Maciejewski, Andrzej J. ;
Przybylska, Maria .
PHYSICS LETTERS A, 2010, 374 (03) :448-452
[7]   First integrals of motion for two dimensional weight-homogeneous Hamiltonian systems in curved spaces [J].
Elmandouh, A. A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 75 :220-235
[8]   On the integrability of 2D Hamiltonian systems with variable Gaussian curvature [J].
Elmandouh, A. A. .
NONLINEAR DYNAMICS, 2018, 93 (02) :933-943
[9]   New integrable problems in a rigid body dynamics with cubic integral in velocities [J].
Elmandouh, A. A. .
RESULTS IN PHYSICS, 2018, 8 :559-568
[10]   On the dynamics of Armbruster Guckenheimer Kim galactic potential in a rotating reference frame [J].
Elmandouh, A. A. .
ASTROPHYSICS AND SPACE SCIENCE, 2016, 361 (06)