All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency

被引:308
作者
Jeong, Sangmoo [1 ]
McGehee, Michael D. [2 ]
Cui, Yi [2 ,3 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[3] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94205 USA
来源
NATURE COMMUNICATIONS | 2013年 / 4卷
关键词
OPTICAL-ABSORPTION ENHANCEMENT; LOW-COST; NANOWIRE; PHOTOVOLTAICS; RECOMBINATION; ARRAYS;
D O I
10.1038/ncomms3950
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Thinner Si solar cells with higher efficiency can make a Si photovoltaic system a cost-effective energy solution, and nanostructuring has been suggested as a promising method to make thin Si an effective absorber. However, thin Si solar cells with nanostructures are not efficient because of severe Auger recombination and increased surface area, normally yielding <50% EQE with short-wavelength light. Here we demonstrate >80% EQEs at wavelengths from 400 to 800 nm in a sub-10-mu m-thick Si solar cell, resulting in 13.7% power conversion efficiency. This significant improvement was achieved with an all-back-contact design preventing Auger recombination and with a nanocone structure having less surface area than any other nanostructures for solar cells. The device design principles presented here balance the photonic and electronic effects together and are an important step to realizing highly efficient, thin Si and other types of thin solar cells.
引用
收藏
页数:7
相关论文
共 44 条
  • [21] High-Efficiency Ordered Silicon Nano-Conical-Frustum Array Solar Cells by Self-Powered Parallel Electron Lithography
    Lu, Yuerui
    Lal, Amit
    [J]. NANO LETTERS, 2010, 10 (11) : 4651 - 4656
  • [22] Efficient Light Trapping in Inverted Nanopyramid Thin Crystalline Silicon Membranes for Solar Cell Applications
    Mavrokefalos, Anastassios
    Han, Sang Eon
    Yerci, Selcuk
    Branham, Matthew S.
    Chen, Gang
    [J]. NANO LETTERS, 2012, 12 (06) : 2792 - 2796
  • [23] Mulligan W.P., 2004, Proc. 19th EUPVSEC, P387
  • [24] Oh J, 2012, NAT NANOTECHNOL, V7, P743, DOI [10.1038/nnano.2012.166, 10.1038/NNANO.2012.166]
  • [25] Abnormal Dopant Distribution in POCl3-Diffused N+ Emitter of Textured Silicon Solar Cells
    Ok, Young-Woo
    Rohatgi, Ajeet
    Kil, Yeon-Ho
    Park, Sung-Eun
    Kim, Dong-Hwan
    Lee, Joon-Sung
    Choi, Chel-Jong
    [J]. IEEE ELECTRON DEVICE LETTERS, 2011, 32 (03) : 351 - 353
  • [26] A LOW-COST, HIGH-EFFICIENCY SOLAR-CELL BASED ON DYE-SENSITIZED COLLOIDAL TIO2 FILMS
    OREGAN, B
    GRATZEL, M
    [J]. NATURE, 1991, 353 (6346) : 737 - 740
  • [27] High-Performance Silicon Nanohole Solar Cells
    Peng, Kui-Qing
    Wang, Xin
    Li, Li
    Wu, Xiao-Ling
    Lee, Shuit-Tong
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (20) : 6872 - +
  • [28] 19%-efficient and 43?μm-thick crystalline Si solar cell from layer transfer using porous silicon
    Petermann, Jan Hendrik
    Zielke, Dimitri
    Schmidt, Jan
    Haase, Felix
    Rojas, Enrique Garralaga
    Brendel, Rolf
    [J]. PROGRESS IN PHOTOVOLTAICS, 2012, 20 (01): : 1 - 5
  • [29] Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs
    Powell, D. M.
    Winkler, M. T.
    Choi, H. J.
    Simmons, C. B.
    Needleman, D. Berney
    Buonassisi, T.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (03) : 5874 - 5883
  • [30] Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties
    Sai, Hitoshi
    Jia, Haijun
    Kondo, Michio
    [J]. JOURNAL OF APPLIED PHYSICS, 2010, 108 (04)