All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency

被引:310
作者
Jeong, Sangmoo [1 ]
McGehee, Michael D. [2 ]
Cui, Yi [2 ,3 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[3] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94205 USA
关键词
OPTICAL-ABSORPTION ENHANCEMENT; LOW-COST; NANOWIRE; PHOTOVOLTAICS; RECOMBINATION; ARRAYS;
D O I
10.1038/ncomms3950
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Thinner Si solar cells with higher efficiency can make a Si photovoltaic system a cost-effective energy solution, and nanostructuring has been suggested as a promising method to make thin Si an effective absorber. However, thin Si solar cells with nanostructures are not efficient because of severe Auger recombination and increased surface area, normally yielding <50% EQE with short-wavelength light. Here we demonstrate >80% EQEs at wavelengths from 400 to 800 nm in a sub-10-mu m-thick Si solar cell, resulting in 13.7% power conversion efficiency. This significant improvement was achieved with an all-back-contact design preventing Auger recombination and with a nanocone structure having less surface area than any other nanostructures for solar cells. The device design principles presented here balance the photonic and electronic effects together and are an important step to realizing highly efficient, thin Si and other types of thin solar cells.
引用
收藏
页数:7
相关论文
共 44 条
[1]  
Benick J., 2009, 24 EUROPEAN PHOTOVOL, P863, DOI DOI 10.4229/24THEUPVSEC2009-2BP.1.3
[2]   PREPARATION OF MONODISPERSE SILICA PARTICLES - CONTROL OF SIZE AND MASS FRACTION [J].
BOGUSH, GH ;
TRACY, MA ;
ZUKOSKI, CF .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1988, 104 (01) :95-106
[3]  
Fan ZY, 2009, NAT MATER, V8, P648, DOI [10.1038/NMAT2493, 10.1038/nmat2493]
[4]   Light Trapping in Silicon Nanowire Solar Cells [J].
Garnett, Erik ;
Yang, Peidong .
NANO LETTERS, 2010, 10 (03) :1082-1087
[5]   Nanowire Solar Cells [J].
Garnett, Erik C. ;
Brongersma, Mark L. ;
Cui, Yi ;
McGehee, Michael D. .
ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 41, 2011, 41 :269-295
[6]   High efficient n-type back-junction back-contact silicon solar cells with screen-printed al-alloyed emitter and effective emitter passivation study [J].
Gong, Chun ;
Singh, Sukhvinder ;
Robbelein, Jo ;
Posthuma, Niels ;
Van Kerschaver, Emmanuel ;
Poortmans, Jef ;
Mertens, Robert .
PROGRESS IN PHOTOVOLTAICS, 2011, 19 (07) :781-786
[7]   Assessing the drivers of regional trends in solar photovoltaic manufacturing [J].
Goodrich, Alan C. ;
Powell, Douglas M. ;
James, Ted L. ;
Woodhouse, Michael ;
Buonassisi, Tonio .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (10) :2811-2821
[8]   Solar cell efficiency tables (version 41) [J].
Green, Martin A. ;
Emery, Keith ;
Hishikawa, Yoshihiro ;
Warta, Wilhelm ;
Dunlop, Ewan D. .
PROGRESS IN PHOTOVOLTAICS, 2013, 21 (01) :1-11
[9]   Air-stable all-inorganic nanocrystal solar cells processed from solution [J].
Gur, I ;
Fromer, NA ;
Geier, ML ;
Alivisatos, AP .
SCIENCE, 2005, 310 (5747) :462-465
[10]   Optical Absorption Enhancement in Silicon Nanohole Arrays for Solar Photovoltaics [J].
Han, Sang Eon ;
Chen, Gang .
NANO LETTERS, 2010, 10 (03) :1012-1015