MAXIMAL AVERAGES ALONG A PLANAR VECTOR FIELD DEPENDING ON ONE VARIABLE

被引:5
作者
Bateman, Michael [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
ARBITRARY SETS; DIRECTIONS; OPERATORS;
D O I
10.1090/S0002-9947-2013-05673-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove (essentially) sharp L-2 estimates for a restricted maximal operator associated to a planar vector field that depends only on the horizontal variable. The proof combines an understanding of such vector fields from earlier work of the author with a result of Nets Katz on directional maximal operators.
引用
收藏
页码:4063 / 4079
页数:17
相关论文
共 8 条
[1]  
Bateman M, 2009, P AM MATH SOC, V137, P955
[2]  
Duoandikoetxea Javier, 2001, AMS GRADUATE STUDIES, V29
[3]  
Fefferman C., ANN MATH, V98, P551
[4]   Remarks on maximal operators over arbitrary sets of directions [J].
Katz, NH .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1999, 31 :700-710
[5]   Maximal operators over arbitrary sets of directions [J].
Katz, NH .
DUKE MATHEMATICAL JOURNAL, 1999, 97 (01) :67-79
[6]  
Lacey M., 2010, MEMOIRS AMS, V205, DOI 10.1090/S0065-9266-10-00572-7.
[7]  
LACEY M, LIPSCHITZ VARIANT KA
[8]   Maximal theorems for the directional Hilbert transform on the plane [J].
Lacey, Michael T. ;
Li, Xiaochun .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (09) :4099-4117