How many invariant polynomials are needed to decide local unitary equivalence of qubit states?

被引:21
作者
Maciazek, Tomasz [1 ,2 ]
Oszmaniec, Michal [1 ]
Sawicki, Adam [1 ,3 ]
机构
[1] Polish Acad Sci, Ctr Theoret Phys, PL-02668 Warsaw, Poland
[2] Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland
[3] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
关键词
CONVEXITY PROPERTIES; ENTANGLEMENT;
D O I
10.1063/1.4819499
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Given L-qubit states with the fixed spectra of reduced one-qubit density matrices, we find a formula for the minimal number of invariant polynomials needed for solving local unitary (LU) equivalence problem, that is, problem of deciding if two states can be connected by local unitary operations. Interestingly, this number is not the same for every collection of the spectra. Some spectra require less polynomials to solve LU equivalence problem than others. The result is obtained using geometric methods, i.e., by calculating the dimensions of reduced spaces, stemming from the symplectic reduction procedure. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:15
相关论文
共 18 条
[1]  
[Anonymous], 1972, INTRO COMPACT TRANSF
[2]  
Christandl M., 2012, ARXIV12040741
[3]  
Grnbaum B., 2003, Graduate Texts in Mathematics, V221
[4]  
Guillemin V., 1982, INVENT MATH, V67
[5]   Kahlerian potentials and convexity properties of the moment map [J].
Heinzner, P ;
Huckleberry, A .
INVENTIONES MATHEMATICAE, 1996, 126 (01) :65-84
[6]   One-qubit reduced states of a pure many-qubit state: Polygon inequalities [J].
Higuchi, A ;
Sudbery, A ;
Szulc, J .
PHYSICAL REVIEW LETTERS, 2003, 90 (10) :3
[7]   CONVEXITY PROPERTIES OF THE MOMENT MAPPING .3. [J].
KIRWAN, F .
INVENTIONES MATHEMATICAE, 1984, 77 (03) :547-552
[8]  
Kirwan F C, 1982, MATH NOTES, V31
[9]  
Klyachko A., 2006, OBERWOLFACH REPORTS, V5, P275
[10]   Local unitary equivalence and entanglement of multipartite pure states [J].
Kraus, B. .
PHYSICAL REVIEW A, 2010, 82 (03)