On-chip dual-comb source for spectroscopy

被引:318
作者
Dutt, Avik [1 ,2 ]
Joshi, Chaitanya [3 ,4 ]
Ji, Xingchen [1 ,2 ]
Cardenas, Jaime [2 ,5 ]
Okawachi, Yoshitomo [4 ]
Luke, Kevin [1 ,6 ]
Gaeta, Alexander L. [4 ]
Lipson, Michal [2 ]
机构
[1] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14853 USA
[2] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
[3] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA
[4] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[5] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
[6] Sensen Inc, 17 Dimick St, Somerville, MA 02143 USA
来源
SCIENCE ADVANCES | 2018年 / 4卷 / 03期
关键词
KERR-FREQUENCY COMBS; SILICON-NITRIDE CHIP; WAVE-GUIDES; MICRORING RESONATORS; OPTICAL FREQUENCIES; HIGH-CONFINEMENT; RING RESONATORS; QUALITY FACTOR; NOBEL LECTURE; GENERATION;
D O I
10.1126/sciadv.1701858
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Dual-comb spectroscopy is a powerful technique for real-time, broadband optical sampling of molecular spectra, which requires no moving components. Recent developments with microresonator-based platforms have enabled frequency combs at the chip scale. However, the need to precisely match the resonance wavelengths of distinct high quality-factor microcavities has hindered the development of on-chip dual combs. We report the simultaneous generation of two microresonator combs on the same chip from a single laser, drastically reducing experimental complexity. We demonstrate broadband optical spectra spanning 51 THz and low-noise operation of both combs by deterministically tuning into solitonmode-locked states using integrated microheaters, resulting in narrow (<10 kHz) microwave beat notes. We further use one comb as a reference to probe the formation dynamics of the other comb, thus introducing a technique to investigate comb evolution without auxiliary lasers or microwave oscillators. We demonstrate high signal-to-noise ratio absorption spectroscopy spanning 170 nm using the dual-comb source over a 20-mu s acquisition time. Our device paves the way for compact and robust spectrometers at nanosecond time scales enabled by large beat-note spacings (>1 GHz).
引用
收藏
页数:9
相关论文
共 64 条
[1]   Cavity-enhanced dual-comb spectroscopy [J].
Bernhardt, Birgitta ;
Ozawa, Akira ;
Jacquet, Patrick ;
Jacquey, Marion ;
Kobayashi, Yohei ;
Udem, Thomas ;
Holzwarth, Ronald ;
Guelachvili, Guy ;
Haensch, Theodor W. ;
Picque, Nathalie .
NATURE PHOTONICS, 2010, 4 (01) :55-57
[2]   Dispersion engineered silicon nitride waveguides by geometrical and refractive-index optimization [J].
Boggio, J. M. Chavez ;
Bodenmueller, D. ;
Fremberg, T. ;
Haynes, R. ;
Roth, M. M. ;
Eisermann, R. ;
Lisker, M. ;
Zimmermann, L. ;
Boehm, M. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2014, 31 (11) :2846-2857
[3]   Dynamical thermal behavior and thermal self-stability of microcavities [J].
Carmon, T ;
Yang, L ;
Vahala, KJ .
OPTICS EXPRESS, 2004, 12 (20) :4742-4750
[4]   Coherent dual-comb spectroscopy at high signal-to-noise ratio [J].
Coddington, I. ;
Swann, W. C. ;
Newbury, N. R. .
PHYSICAL REVIEW A, 2010, 82 (04)
[5]  
Coddington I, 2016, OPTICA, V3, P414, DOI [10.1364/optica.3.000414, 10.1364/OPTICA.3.000414]
[6]   Universal scaling laws of Kerr frequency combs [J].
Coen, Stephane ;
Erkintalo, Miro .
OPTICS LETTERS, 2013, 38 (11) :1790-1792
[7]   Colloquium:: Femtosecond optical frequency combs [J].
Cundiff, ST ;
Ye, J .
REVIEWS OF MODERN PHYSICS, 2003, 75 (01) :325-342
[8]   Optical frequency comb generation from a monolithic microresonator [J].
Del'Haye, P. ;
Schliesser, A. ;
Arcizet, O. ;
Wilken, T. ;
Holzwarth, R. ;
Kippenberg, T. J. .
NATURE, 2007, 450 (7173) :1214-1217
[9]   Octave Spanning Tunable Frequency Comb from a Microresonator [J].
Del'Haye, P. ;
Herr, T. ;
Gavartin, E. ;
Gorodetsky, M. L. ;
Holzwarth, R. ;
Kippenberg, T. J. .
PHYSICAL REVIEW LETTERS, 2011, 107 (06)
[10]   Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb [J].
Diddams, SA ;
Jones, DJ ;
Ye, J ;
Cundiff, ST ;
Hall, JL ;
Ranka, JK ;
Windeler, RS ;
Holzwarth, R ;
Udem, T ;
Hänsch, TW .
PHYSICAL REVIEW LETTERS, 2000, 84 (22) :5102-5105