THE VALUE DISTRIBUTION OF INCOMPLETE GAUSS SUMS

被引:10
作者
Akarsu, Emek Demirci [1 ]
Marklof, Jens [1 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
关键词
CENTRAL LIMIT-THEOREM; ASYMPTOTIC APPROXIMATION;
D O I
10.1112/S0025579312001179
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well known that the classical Gauss sum, normalized by the square-root number of terms, takes only finitely many values. If one restricts the range of summation to a subinterval, a much richer structure emerges. We prove a limit law for the value distribution of such incomplete Gauss sums. The limit distribution is given by the distribution of a certain family of periodic functions. Our results complement Oskolkov's pointwise bounds for incomplete Gauss sums as well as the limit theorems for quadratic Weyl sums (theta sums) due to Jurkat and van Horne and the second author.
引用
收藏
页码:381 / 398
页数:18
相关论文
共 17 条
[1]  
Arkhipov G. I., 1989, SOV MATH, V62, P145
[2]   Limiting curlicue measures for theta sums [J].
Cellarosi, Francesco .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (02) :466-497
[3]  
Chinen K., 1998, MATH JPN, V48, P223
[4]   Weyl Sums for Quadratic Roots [J].
Duke, W. ;
Friedlander, J. B. ;
Iwaniec, H. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (11) :2493-2549
[5]  
Estermann T., 1961, MATHEMATIKA, V8, P83, DOI DOI 10.1112/S0025579300002187
[6]   Incomplete higher-order Gauss sums [J].
Evans, R ;
Minei, M ;
Yee, B .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 281 (02) :454-476
[7]  
Fiedler H., 1977, ACTA ARITH, V32, P129, DOI 10.4064/aa-32-2-129-146
[8]   THE PROOF OF THE CENTRAL LIMIT-THEOREM FOR THETA-SUMS [J].
JURKAT, WB ;
VANHORNE, JW .
DUKE MATHEMATICAL JOURNAL, 1981, 48 (04) :873-885
[9]   THE UNIFORM CENTRAL LIMIT-THEOREM FOR THETA SUMS [J].
JURKAT, WB ;
VANHORNE, JW .
DUKE MATHEMATICAL JOURNAL, 1983, 50 (03) :649-666
[10]  
JURKAT WB, 1982, MICH MATH J, V29, P65