Universal Slope Sets for 1-Bend Planar Drawings

被引:5
|
作者
Angelini, Patrizio [1 ]
Bekos, Michael A. [1 ]
Liotta, Giuseppe [2 ]
Montecchiani, Fabrizio [2 ]
机构
[1] Univ Tubingen, Wilhelm Schickhard Inst Informat, Tubingen, Germany
[2] Univ Perugia, Dipartimento Ingn, Perugia, Italy
关键词
Graph drawing; Slope number; 1-Bend planar drawings; GRAPHS;
D O I
10.1007/s00453-018-00542-9
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We prove that every set of -1 slopes is 1-bend universal for the planar graphs with maximum vertex degree . This means that any planar graph with maximum degree admits a planar drawing with at most one bend per edge and such that the slopes of the segments forming the edges can be chosen in any given set of -1 slopes. Our result improves over previous literature in three ways: Firstly, it improves the known upper bound of 1) on the 1-bend planar slope number; secondly, the previously known algorithms compute 1-bend planar drawings by using sets of O() slopes that may vary depending on the input graph; thirdly, while these algorithms typically minimize the slopes at the expenses of constructing drawings with poor angular resolution, we can compute drawings whose angular resolution is at least which is worst-case optimal up to a factor of . Our proofs are constructive and give rise to a linear-time drawing algorithm.
引用
收藏
页码:2527 / 2556
页数:30
相关论文
共 14 条
  • [1] Universal Slope Sets for 1-Bend Planar Drawings
    Patrizio Angelini
    Michael A. Bekos
    Giuseppe Liotta
    Fabrizio Montecchiani
    Algorithmica, 2019, 81 : 2527 - 2556
  • [2] Universal Slope Sets for Upward Planar Drawings
    Michael A. Bekos
    Emilio Di Giacomo
    Walter Didimo
    Giuseppe Liotta
    Fabrizio Montecchiani
    Algorithmica, 2022, 84 : 2556 - 2580
  • [3] 1-bend upward planar slope number of SP-digraphs
    Di Giacomo, Emilio
    Liotta, Giuseppe
    Montecchiani, Fabrizio
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2020, 90
  • [4] Universal Slope Sets for Upward Planar Drawings
    Bekos, Michael A.
    Di Giacomo, Emilio
    Didimo, Walter
    Liotta, Giuseppe
    Montecchiani, Fabrizio
    ALGORITHMICA, 2022, 84 (09) : 2556 - 2580
  • [5] 1-Bend Upward Planar Drawings of SP-Digraphs
    Di Giacomo, Emilio
    Liotta, Giuseppe
    Montecchiani, Fabrizio
    GRAPH DRAWING AND NETWORK VISUALIZATION (GD 2016), 2016, 9801 : 123 - 130
  • [6] Universal Sets of n Points for One-bend Drawings of Planar Graphs with n Vertices
    Hazel Everett
    Sylvain Lazard
    Giuseppe Liotta
    Stephen Wismath
    Discrete & Computational Geometry, 2010, 43 : 272 - 288
  • [7] Universal Sets of n Points for One-bend Drawings of Planar Graphs with n Vertices
    Everett, Hazel
    Lazard, Sylvain
    Liotta, Giuseppe
    Wismath, Stephen
    DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 43 (02) : 272 - 288
  • [8] k-spine, 1-bend planarity
    Di Giacomo, Emilio
    Didimo, Walter
    Liotta, Giuseppe
    Suderman, Matthew
    THEORETICAL COMPUTER SCIENCE, 2006, 359 (1-3) : 148 - 175
  • [9] Planar Octilinear Drawings with One Bend Per Edge
    Bekos, Michael A.
    Gronemann, Martin
    Kaufmann, Michael
    Krug, Robert
    GRAPH DRAWING (GD 2014), 2014, 8871 : 331 - 342
  • [10] Bend minimization in planar orthogonal drawings using integer programming
    Mutzel, Petra
    Weiskircher, Rene
    SIAM JOURNAL ON OPTIMIZATION, 2006, 17 (03) : 665 - 687