On classification of non-unital amenable simple C*-algebras, II

被引:22
作者
Gong, Guihua [1 ,2 ]
Lin, Huaxin [3 ,4 ]
机构
[1] Hebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang, Hebei, Peoples R China
[2] Univ Puerto Rico, Dept Math, Rio Piedras, PR 00936 USA
[3] East China Normal Univ, Dept Math, Shanghai, Peoples R China
[4] Univ Oregon, Dept Math, Eugene, OR 97402 USA
关键词
Classification of simple C*-algebras; NUCLEAR DIMENSION; REAL RANK; Z-STABILITY; HOMOMORPHISMS; THEOREM; HOMOTOPY; TRACES; STATES; LIMITS;
D O I
10.1016/j.geomphys.2020.103865
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a classification theorem for separable amenable simple stably projectionless C*-algebras with finite nuclear dimension whose K-0 vanish on traces which satisfy the Universal Coefficient Theorem. One of C*-algebras in the class is denoted by Z(0) which has a unique tracial state, K-0(Z(0)) = Z and K-1(Z(0)) = {0}. Let A and B be two separable amenable simple C*-algebras satisfying the UCT. We show that A circle times Z(0) congruent to B circle times Z(0) if and only if Ell(A circle times Z(0)) = Ell(B circle times Z(0)). A class of simple separable C*-algebras which are approximately sub-homogeneous whose spectra having bounded dimension is shown to exhaust all possible Elliott invariant for C*-algebras of the form A circle times Z(0), where A is any finite separable simple amenable C*-algebras. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:102
相关论文
共 60 条
[11]  
Elliott G. A., ARXIV150703437
[12]   THE STATE-SPACE OF THE K(0)-GROUP OF A SIMPLE SEPARABLE C-ASTERISK-ALGEBRA [J].
ELLIOTT, GA ;
THOMSEN, K .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1994, 4 (05) :522-538
[13]  
Elliott GA, 1995, PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOLS 1 AND 2, P922
[14]   On the classification of C*-algebras of real rank zero .2. [J].
Elliott, GA ;
Gong, GH .
ANNALS OF MATHEMATICS, 1996, 144 (03) :497-610
[15]   The classification of simple separable KK-contractible C*-algebras with finite nuclear dimension [J].
Elliott, George A. ;
Gong, Guihua ;
Lin, Huaxin ;
Niu, Zhuang .
JOURNAL OF GEOMETRY AND PHYSICS, 2020, 158
[16]   Simple stably projectionless C*-algebras with generalized tracial rank one [J].
Elliott, George A. ;
Gong, Guihua ;
Lin, Huaxin ;
Niu, Zhuang .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2020, 14 (01) :251-347
[17]  
Elliott George A., 1996, Canadian Mathematical Society. 1945-1995, V3, P61
[18]  
Gong G., PREPRINT
[19]  
Gong G., ARXIV150100135
[20]   Almost multiplicative morphisms and K-theory [J].
Gong, GH ;
Lin, HX .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2000, 11 (08) :983-1000