On optimal steering of a non-Markovian Gaussian process

被引:0
|
作者
Alpago, Daniele [1 ]
Chen, Yongxin [2 ]
Georgiou, Tryphon [3 ]
Pavon, Michele [4 ]
机构
[1] Univ Padua, Dipartimento Ingn Informaz, I-35131 Padua, Italy
[2] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30332 USA
[3] Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92697 USA
[4] Univ Padua, Dipartimento Matemat Tullio Levi Civita, I-35121 Padua, Italy
基金
美国国家科学基金会;
关键词
COVARIANCE CONTROL;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
At present, the problem to steer general non-Markovian processes between specified end-point marginal distributions with minimum energy remains unsolved. Herein, we consider the special case of a non-Markovian process y(t) which assumes a finite-dimensional stochastic realization with a Markov state process that is fully observable. In this setting, and over a finite time horizon [O, T], we determine an optimal (least) finite-energy control law that steers the stochastic system to a final distribution that is compatible with a specified distribution for the terminal output process y(T); the solution is given in closed-form. This work provides a key step towards the important problem to steer a stochastic system based on partial observations of the state (i.e., an output process) corrupted by noise.
引用
收藏
页码:2556 / 2561
页数:6
相关论文
共 50 条
  • [21] Non-Markovian process with variable memory functions
    Chanu, Athokpam Langlen
    Bhadana, Jyoti
    Brojen Singh, R. K.
    RICERCHE DI MATEMATICA, 2023, 72 (02) : 835 - 851
  • [22] Experimental characterization of a non-Markovian quantum process
    Goswami, K.
    Giarmatzi, C.
    Monterola, C.
    Shrapnel, S.
    Romero, J.
    Costa, F.
    PHYSICAL REVIEW A, 2021, 104 (02)
  • [23] Non-Markovian process with variable memory functions
    Athokpam Langlen Chanu
    Jyoti Bhadana
    R. K. Brojen Singh
    Ricerche di Matematica, 2023, 72 : 835 - 851
  • [24] NON-MARKOVIAN BIRTH PROCESS WITH LOGARITHMIC GROWTH
    GRIMMETT, GR
    JOURNAL OF APPLIED PROBABILITY, 1975, 12 (04) : 673 - 683
  • [25] NON-BINARY BRANCHING PROCESS AND NON-MARKOVIAN EXPLORATION PROCESS
    Drame, Ibrahima
    Pardoux, Etienne
    Sow, A. B.
    ESAIM-PROBABILITY AND STATISTICS, 2017, 21 : 1 - 33
  • [26] Quantum force estimation in arbitrary non-Markovian Gaussian baths
    Latune, C. L.
    Sinayskiy, I.
    Petruccione, F.
    PHYSICAL REVIEW A, 2016, 94 (05)
  • [27] Dynamic of the Gaussian quantum discord and effect of non-Markovian degree
    Liu, Xin
    Wu, Wei
    Hu, Changkui
    CANADIAN JOURNAL OF PHYSICS, 2015, 93 (04) : 481 - 485
  • [28] Survival probability of a Gaussian non-Markovian process: Application to the T=0 dynamics of the Ising model
    Majumdar, SN
    Sire, C
    PHYSICAL REVIEW LETTERS, 1996, 77 (08) : 1420 - 1423
  • [29] Exact Closed Master Equation for Gaussian Non-Markovian Dynamics
    Ferialdi, L.
    PHYSICAL REVIEW LETTERS, 2016, 116 (12)
  • [30] Persistence of non-Markovian Gaussian stationary processes in discrete time
    Nyberg, Markus
    Lizana, Ludvig
    PHYSICAL REVIEW E, 2018, 97 (04)