On optimal steering of a non-Markovian Gaussian process

被引:0
作者
Alpago, Daniele [1 ]
Chen, Yongxin [2 ]
Georgiou, Tryphon [3 ]
Pavon, Michele [4 ]
机构
[1] Univ Padua, Dipartimento Ingn Informaz, I-35131 Padua, Italy
[2] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30332 USA
[3] Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92697 USA
[4] Univ Padua, Dipartimento Matemat Tullio Levi Civita, I-35121 Padua, Italy
来源
2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC) | 2019年
基金
美国国家科学基金会;
关键词
COVARIANCE CONTROL;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
At present, the problem to steer general non-Markovian processes between specified end-point marginal distributions with minimum energy remains unsolved. Herein, we consider the special case of a non-Markovian process y(t) which assumes a finite-dimensional stochastic realization with a Markov state process that is fully observable. In this setting, and over a finite time horizon [O, T], we determine an optimal (least) finite-energy control law that steers the stochastic system to a final distribution that is compatible with a specified distribution for the terminal output process y(T); the solution is given in closed-form. This work provides a key step towards the important problem to steer a stochastic system based on partial observations of the state (i.e., an output process) corrupted by noise.
引用
收藏
页码:2556 / 2561
页数:6
相关论文
共 46 条
[1]  
[Anonymous], ARXIV180300567
[2]  
[Anonymous], 2006, Planning algorithms, Complexity
[3]   Finite-horizon covariance control for discrete-time stochastic linear systems subject to input constraints [J].
Bakolas, Efstathios .
AUTOMATICA, 2018, 91 :61-68
[4]   ITERATIVE BREGMAN PROJECTIONS FOR REGULARIZED TRANSPORTATION PROBLEMS [J].
Benamou, Jean-David ;
Carlier, Guillaume ;
Cuturi, Marco ;
Nenna, Luca ;
Peyre, Gabriel .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (02) :A1111-A1138
[5]   AN AUTOMORPHISM OF PRODUCT MEASURES [J].
BEURLING, A .
ANNALS OF MATHEMATICS, 1960, 72 (01) :189-200
[6]  
Blaquiere A., 1992, Dynamics and Control, V2, P235, DOI 10.1007/BF02169515
[7]   Nonequilibrium Steady-State Fluctuations in Actively Cooled Resonators [J].
Bonaldi, M. ;
Conti, L. ;
De Gregorio, P. ;
Rondoni, L. ;
Vedovato, G. ;
Vinante, A. ;
Bignotto, M. ;
Cerdonio, M. ;
Falferi, P. ;
Liguori, N. ;
Longo, S. ;
Mezzena, R. ;
Ortolan, A. ;
Prodi, G. A. ;
Salemi, F. ;
Taffarello, L. ;
Vitale, S. ;
Zendri, J. -P. .
PHYSICAL REVIEW LETTERS, 2009, 103 (01)
[8]   Control of friction at the nanoscale [J].
Braiman, Y ;
Barhen, J ;
Protopopescu, V .
PHYSICAL REVIEW LETTERS, 2003, 90 (09) :4
[9]   Notes on the Control of the Liouville Equation [J].
Brockett, Roger .
CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS: CETRARO, ITALY 2010, 2012, 2048 :101-129
[10]   Optimal Transport Over a Linear Dynamical System [J].
Chen, Yongxin ;
Georgiou, Tryphon T. ;
Pavon, Michele .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (05) :2137-2152