Deep transfer learning CNN based approach for COVID-19 detection

被引:2
作者
Muhammad, Wazir [1 ]
Bhutto, Zuhaibuddin [2 ]
Shah, Syed Ali Raza [3 ]
Shah, Jalal [2 ]
Shaikh, Murtaza Hussain [4 ]
Hussain, Ayaz [1 ]
Thaheem, Imdadullah [5 ]
Ali, Shamshad [1 ]
机构
[1] Balochistan Univ Engn & Technol, Dept Elect Engn, Khuzdar, Pakistan
[2] Balochistan Univ Engn & Technol, Dept Comp Syst Engn, Khuzdar, Pakistan
[3] Balochistan Univ Engn & Technol, Dept Mech Engn, Khuzdar, Pakistan
[4] Kyungsung Univ, Dept Informat Syst, Busan, South Korea
[5] Balochistan Univ Engn & Technol, Dept Energy Syst Engn, Khuzdar, Pakistan
来源
INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES | 2022年 / 9卷 / 04期
关键词
COVID-19; Deep learning; Transfer learning; Chest X-ray;
D O I
10.21833/ijaas.2022.04.006
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recently, the novel coronavirus (Covid-19) and its different variants have spread rapidly across the world. Early-stage detection of COVID-19 is a challenging task due to the limited availability of Covid testing kits to the public. Conventionally, reverse transcription-polymerase chain reaction (RTPCR) is the reliable test for the detection of COVID-19 which is timeconsuming and costly. The aim of this work is to identify the COVID-19 symptoms with the help of a deep learning algorithm using chest X-Ray images. In order to improve the quality of chest X-Ray images, authors have further modified the pre-trained model with some extra CNN layers, such as the first layer is the average pooling layer and the other two are dense layers followed by ReLU with softmax activation function. The experimental results have been carried out on publicly available chest X-Ray images of COVID-19 to mark COVID-19 patients as positive and negative datasets. For evaluation purpose, we have used benchmark of pre-trained models such as VGG-16 (Visual Geometry Group), VGG19, Xception, ResNet152, ResNet152v2, ResNet101, ResNet101v2, DenseNet201, DenseNet169 and DenseNet121. On the benchmark datasets, viz. COVID-19 X-Ray images, an average improvement in terms of training/validation accuracy, precision, recall, and F1-scores scores were 95%, 94%, 99/88%, 99/88%, and 93/92% respectively. The results provide sufficient evidence that deep learning can be used efficiently for the detection of COVID-19 symptoms. (c) 2022 The Authors. Published by IASE.
引用
收藏
页码:44 / 52
页数:9
相关论文
共 40 条
[1]   Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network [J].
Abbas, Asmaa ;
Abdelsamea, Mohammed M. ;
Gaber, Mohamed Medhat .
APPLIED INTELLIGENCE, 2021, 51 (02) :854-864
[2]   Diagnosis of Pneumonia from Chest X-Ray Images using Deep Learning [J].
Ayan, Enes ;
Unver, Halil Murat .
2019 SCIENTIFIC MEETING ON ELECTRICAL-ELECTRONICS & BIOMEDICAL ENGINEERING AND COMPUTER SCIENCE (EBBT), 2019,
[3]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[4]   COVID-19 Contact Tracing: Challenges and Future Directions [J].
Chowdhury, Mohammad Jabed Morshed ;
Ferdous, Md Sadek ;
Biswas, Kamanashis ;
Chowdhury, Niaz ;
Muthukkumarasamy, Vallipuram .
IEEE ACCESS, 2020, 8 :225703-225729
[5]  
Cohen JP., 2020, ARXIV200611988CSEESS
[6]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[7]  
Hall LO, 2020, ARXIV200402060V4, DOI [10.36227/techrxiv.12083964.v2, DOI 10.36227/TECHRXIV.12083964.V2]
[8]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[9]  
Hemdan EE, 2020, COVIDX NET FRAMEWORK
[10]   Anomaly Detection in COVID-19 Time-Series Data [J].
Homayouni H. ;
Ray I. ;
Ghosh S. ;
Gondalia S. ;
Kahn M.G. .
SN Computer Science, 2021, 2 (4)