Stochastic Variational Inequalities and Applications to the Total Variation Flow Perturbed by Linear Multiplicative Noise

被引:38
作者
Barbu, Viorel [1 ]
Roeckner, Michael [2 ]
机构
[1] Romanian Acad, Octav Mayer Inst Math, Iasi 700506, Romania
[2] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
关键词
DIFFUSION-EQUATIONS; EXTINCTION;
D O I
10.1007/s00205-013-0632-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we introduce a new method to prove the existence and uniqueness of a variational solution to the stochastic nonlinear diffusion equation where is a bounded and open domain in and W(t) is a Wiener process of the form and are independent Brownian motions. This is a stochastic diffusion equation with a highly singular diffusivity term. One main result established here is that for all initial conditions in , it is well posed in a class of continuous solutions to the corresponding stochastic variational inequality. Thus, one obtains a stochastic version of the (minimal) total variation flow. The new approach developed here also allows us to prove the finite time extinction of solutions in dimensions , which is another main result of this work.
引用
收藏
页码:797 / 834
页数:38
相关论文
共 32 条
[1]  
Ambrosio L., 2000, OX MATH M, pxviii, DOI 10.1017/S0024609301309281
[2]   Some qualitative properties for the total variation flow [J].
Andreu, F ;
Caselles, V ;
Diaz, JI ;
Mazón, JM .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 188 (02) :516-547
[3]  
[Anonymous], 2004, SERIES PROGR MATH
[4]  
[Anonymous], 1973, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert
[5]  
[Anonymous], 2010, FUNCTIONAL ANAL
[6]  
ATTOUCH H., 2006, SIAM SERIES OPTIMIZA
[7]   A PDE variational approach to image denoising and restoration [J].
Barbu, Tudor ;
Barbu, Viorel ;
Biga, Veronica ;
Coca, Daniel .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (03) :1351-1361
[8]  
Barbu V, 2010, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-4419-5542-5
[9]  
Barbu V, 2008, INDIANA U MATH J, V57, P187
[10]   Finite time extinction of solutions to fast diffusion equations driven by linear multiplicative noise [J].
Barbu, Viorel ;
Da Prato, Giuseppe ;
Roeckner, Michael .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (01) :147-164