Killing-Yano 2-forms on 2-step nilpotent Lie groups

被引:5
|
作者
Andrada, Adrian [1 ]
Dotti, Isabel G. [1 ]
机构
[1] Univ Nacl Cordoba, FAMAF, CIEM, CONICET, Ave Medina Allende S-N,Ciudad Univ, Cordoba, Argentina
关键词
Killing-Yano forms; Parallel tensors; Nilpotent Lie groups; FORMS;
D O I
10.1007/s10711-020-00564-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we show that the only 2-step nilpotent Lie groups which carry a non-degenerate left invariant Killing-Yano 2-form are the complex Lie groups. In the case of 2-step nilpotent complex Lie groups arising from connected graphs, we prove that the space of left invariant Killing-Yano 2-forms is one-dimensional.
引用
收藏
页码:415 / 424
页数:10
相关论文
共 50 条
  • [1] Killing–Yano 2-forms on 2-step nilpotent Lie groups
    Adrián Andrada
    Isabel G. Dotti
    Geometriae Dedicata, 2021, 212 : 415 - 424
  • [2] Conformal Killing-Yano 2-forms
    Andrada, A.
    Dotti, I. G.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2018, 58 : 103 - 119
  • [3] Invariant Conformal Killing-Yano 2-Forms on Five-Dimensional Lie Groups
    Herrera, A.
    Origlia, M.
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (08)
  • [4] Killing-Yano 2-forms on homogeneous spaces
    Dotti I.G.
    Herrera A.C.
    São Paulo Journal of Mathematical Sciences, 2018, 12 (2) : 227 - 245
  • [5] Conformal Killing forms on 2-step nilpotent Riemannian Lie groups
    del Barco, Viviana
    Moroianu, Andrei
    FORUM MATHEMATICUM, 2021, 33 (05) : 1331 - 1347
  • [6] The Killing-Yano equation on Lie groups
    Barberis, M. L.
    Dotti, I. G.
    Santillan, O.
    CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (06)
  • [7] Invariant Conformal Killing–Yano 2-Forms on Five-Dimensional Lie Groups
    A. Herrera
    M. Origlia
    The Journal of Geometric Analysis, 2022, 32
  • [8] Lie algebra of conformal Killing-Yano forms
    Ertem, Umit
    CLASSICAL AND QUANTUM GRAVITY, 2016, 33 (12)
  • [9] ISOMETRY GROUPS OF PSEUDORIEMANNIAN 2-STEP NILPOTENT LIE GROUPS
    Cordero, Luis A.
    Parker, Phillip E.
    HOUSTON JOURNAL OF MATHEMATICS, 2009, 35 (01): : 49 - 72
  • [10] 2-step nilpotent Lie groups of higher rank
    Samiou, E
    MANUSCRIPTA MATHEMATICA, 2002, 107 (01) : 101 - 110