AFFINE BRAID GROUP ACTIONS ON DERIVED CATEGORIES OF SPRINGER RESOLUTIONS

被引:0
作者
Bezrukavnikov, Roman [1 ]
Riche, Simon [2 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Univ Clermont Ferrand 2, Lab Math, CNRS, UMR 6620, F-63177 Aubiere, France
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2012年 / 45卷 / 04期
基金
美国国家科学基金会;
关键词
COHERENT SHEAVES; LIE-ALGEBRAS; ENVELOPING-ALGEBRAS; FLAG VARIETIES; SCHEMES; MODULES; REPRESENTATIONS; LOCALIZATION; COHOMOLOGY; DUALITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we construct and study an action of the affine braid group associated with a semi-simple algebraic group on derived categories of coherent sheaves on various varieties related to the Springer resolution of the nilpotent cone. In particular, we describe explicitly the action of the Artin braid group. This action is a "categorical version" of Kazhdan-Lusztig-Ginzburg's construction of the affine Hecke algebra, and is used in particular by the first author and I. Mirkovie in the course of the proof of Lusztig's conjectures on equivariant K-theory of Springer fibers.
引用
收藏
页码:535 / 599
页数:65
相关论文
共 61 条
[1]  
[Anonymous], 1980, Lecture Notes in Mathematics
[2]  
[Anonymous], 2006, OXFORD MATH MONOGR
[3]  
[Anonymous], 1980, MATH LECT NOTE SERIE
[4]  
Arinkin D, 2010, MOSC MATH J, V10, P3
[5]   TWISTED HOMOGENEOUS COORDINATE RINGS [J].
ARTIN, M ;
VANDENBERGH, M .
JOURNAL OF ALGEBRA, 1990, 133 (02) :249-271
[6]   TILTING EXERCISES [J].
Beilinson, A. ;
Bezrukavnikov, R. ;
Mirkovic, I. .
MOSCOW MATHEMATICAL JOURNAL, 2004, 4 (03) :547-557
[7]  
Bernstein J., 1994, Lecture Notes in Mathematics, V1578
[8]  
Berthelot P., 1971, Theorie des intersections et theoreme de Riemann-Roch, SGA, V225
[9]  
Bezrukavnikov R., ANN MATH
[10]  
Bezrukavnikov R, 2006, INT C MATH, VII, P1119