Adaptive Bayesian multivariate density estimation with Dirichlet mixtures

被引:78
作者
Shen, Weining [1 ]
Tokdar, Surya T. [2 ]
Ghosal, Subhashis [1 ]
机构
[1] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
[2] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
Anisotropy; Dirichlet mixture; Multivariate density estimation; Nonparametric Bayesian method; Rate adaptation; POSTERIOR DISTRIBUTIONS; CONVERGENCE-RATES; MODEL SELECTION; INFERENCE;
D O I
10.1093/biomet/ast015
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We show that rate-adaptive multivariate density estimation can be performed using Bayesian methods based on Dirichlet mixtures of normal kernels with a prior distribution on the kernel's covariance matrix parameter. We derive sufficient conditions on the prior specification that guarantee convergence to a true density at a rate that is minimax optimal for the smoothness class to which the true density belongs. No prior knowledge of smoothness is assumed. The sufficient conditions are shown to hold for the Dirichlet location mixture-of-normals prior with a Gaussian base measure and an inverse Wishart prior on the covariance matrix parameter. Locally Holder smoothness classes and their anisotropic extensions are considered. Our study involves several technical novelties, including sharp approximation of finitely differentiable multivariate densities by normal mixtures and a new sieve on the space of such densities.
引用
收藏
页码:623 / 640
页数:18
相关论文
共 50 条
  • [31] Adaptive estimation of multivariate functions using conditionally Gaussian tensor-product spline priors
    de Jonge, R.
    van Zanten, J. H.
    ELECTRONIC JOURNAL OF STATISTICS, 2012, 6 : 1984 - 2001
  • [32] A Bayesian Approach to Change Point Estimation in Multivariate SPC
    Pan, Rong
    Rigdon, Steven E.
    JOURNAL OF QUALITY TECHNOLOGY, 2012, 44 (03) : 231 - 248
  • [33] Polynomial Histograms for Multivariate Density and Mode Estimation
    Jing, Junmei
    Koch, Inge
    Naito, Kanta
    SCANDINAVIAN JOURNAL OF STATISTICS, 2012, 39 (01) : 75 - 96
  • [34] Computational Aspects of Bayesian Spectral Density Estimation
    Chopin, N.
    Rousseau, J.
    Liseo, B.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2013, 22 (03) : 533 - 557
  • [35] Bayesian Nonparametric Models of Circular Variables Based on Dirichlet Process Mixtures of Normal Distributions
    Nunez-Antonio, Gabriel
    Concepcion Ausin, Maria
    Wiper, Michael P.
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2015, 20 (01) : 47 - 64
  • [36] Bayesian Nonparametric Spatially Smoothed Density Estimation
    Hanson, Timothy
    Zhou, Haiming
    de Carvalho, Vanda Inacio
    NEW FRONTIERS OF BIOSTATISTICS AND BIOINFORMATICS, 2018, : 87 - 105
  • [37] Bayesian density estimation for compositional data using random Bernstein polynomials
    Barrientos, Andres F.
    Jara, Alejandro
    Quintana, Fernando A.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2015, 166 : 116 - 125
  • [38] Efficient Bayesian estimation of the multivariate Double Chain Markov Model
    Fitzpatrick, Matthew
    Marchev, Dobrin
    STATISTICS AND COMPUTING, 2013, 23 (04) : 467 - 480
  • [39] Bayesian Nonparametric Instrumental Variables Regression Based on Penalized Splines and Dirichlet Process Mixtures
    Wiesenfarth, Manuel
    Matias Hisgen, Carlos
    Kneib, Thomas
    Cadarso-Suarez, Carmen
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2014, 32 (03) : 468 - 482
  • [40] A Note on Asymptotic Behavior of the Nonparametric Density Estimators in Multivariate Mixtures
    Pakyari, Reza
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2009, 38 (08) : 1219 - 1223