MULTIPLE SOLUTIONS FOR A NONHOMOGENEOUS SCHRODINGER-POISSON SYSTEM WITH CONCAVE AND CONVEX NONLINEARITIES

被引:3
作者
Wang, Lixia [1 ,2 ]
Ma, Shiwang [3 ,4 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Weijin Rd, Tianjin 300072, Peoples R China
[2] Tianjin Chengjian Univ, Sch Sci, Jinjing Rd, Tianjin 300384, Peoples R China
[3] Nankai Univ, Sch Math Sci, Weijin Rd, Tianjin 300071, Peoples R China
[4] Nankai Univ, LPMC, Weijin Rd, Tianjin 300071, Peoples R China
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2019年 / 9卷 / 02期
基金
中国国家自然科学基金;
关键词
Schrodinger-Poisson systems; concave and convex nonlinearities; variational methods; Ekeland's variational principle; Mountain Pass Theorem; GROUND-STATE SOLUTIONS; KLEIN-GORDON-MAXWELL; POSITIVE SOLUTIONS; SOLITARY WAVES; VARIATIONAL APPROACH; THOMAS-FERMI; EXISTENCE; EQUATIONS; ATOMS;
D O I
10.11948/2156-907X.20180132
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following nonhomogeneous Schrodinger-Poisson equation (*) {-Delta u + V(x)u + phi(x)u = -k(x)vertical bar u vertical bar(q-2)u + h(x)vertical bar u vertical bar(p-2)u + g(x), x is an element of R-3, -Delta phi = u(2), lim(vertical bar x vertical bar -> +infinity) phi(x) = 0, x is an element of R-3, where 1 < q < 2, 4 < p < 6. Under some suitable assumptions on V(x), k(x), h(x) and g(x), the existence of multiple solutions is proved by using the Ekeland's variational principle and the Mountain Pass Theorem in critical point theory.
引用
收藏
页码:628 / 637
页数:10
相关论文
共 50 条
  • [11] Positive solutions for some non-autonomous Schrodinger-Poisson systems
    Cerami, Giovanna
    Vaira, Giusi
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (03) : 521 - 543
  • [12] Multiple solutions for nonhomogeneous Schrodinger-Maxwell and Klein- Gordon-Maxwell equations on R 3
    Chen, Shang-Jie
    Tang, Chun-Lei
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2010, 17 (05): : 559 - 574
  • [13] Coclite G.M., 2003, Commun. Appl. Anal, V7, P417
  • [14] Coclite G.M., 2002, Ann. Polon. Math, V79, P21
  • [15] Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrodinger-Maxwell equations
    D'Aprile, T
    Mugnai, D
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 : 893 - 906
  • [16] Non-existence results for the coupled Klein-Gordon-Maxwell equations
    D'Aprile, T
    Mugnai, D
    [J]. ADVANCED NONLINEAR STUDIES, 2004, 4 (03) : 307 - 322
  • [17] MULTIPLE SOLUTIONS FOR NONHOMOGENEOUS SCHRODINGER-POISSON SYSTEMS WITH THE ASYMPTOTICAL NONLINEARITY IN R3
    Ding, Ling
    Li, Lin
    Zhang, Jing-Ling
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (05): : 1627 - 1650
  • [18] Huang L., 2013, Commun. Math. Anal, V15, P29
  • [19] Two positive solutions of a class of Schrodinger-Poisson system with indefinite nonlinearity
    Huang, Lirong
    Rocha, Eugenio M.
    Chen, Jianqing
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (08) : 2463 - 2483
  • [20] Positive and sign-changing solutions of a Schrodinger-Poisson system involving a critical nonlinearity
    Huang, Lirong
    Rocha, Eugenio M.
    Chen, Jianqing
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 408 (01) : 55 - 69