In this paper, we consider the following nonhomogeneous Schrodinger-Poisson equation (*) {-Delta u + V(x)u + phi(x)u = -k(x)vertical bar u vertical bar(q-2)u + h(x)vertical bar u vertical bar(p-2)u + g(x), x is an element of R-3, -Delta phi = u(2), lim(vertical bar x vertical bar -> +infinity) phi(x) = 0, x is an element of R-3, where 1 < q < 2, 4 < p < 6. Under some suitable assumptions on V(x), k(x), h(x) and g(x), the existence of multiple solutions is proved by using the Ekeland's variational principle and the Mountain Pass Theorem in critical point theory.
机构:
Taiyuan Univ Technol, Coll Math, Taiyuan 030024, Shanxi, Peoples R ChinaTaiyuan Univ Technol, Coll Math, Taiyuan 030024, Shanxi, Peoples R China
Bai, Liang
Nieto, Juan J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Santiago de Compostela, Fac Matemat, Dept Anal Matemat Estadist & Optimizac, Santiago De Compostela 15782, SpainTaiyuan Univ Technol, Coll Math, Taiyuan 030024, Shanxi, Peoples R China
机构:
Taiyuan Univ Technol, Coll Math, Taiyuan 030024, Shanxi, Peoples R ChinaTaiyuan Univ Technol, Coll Math, Taiyuan 030024, Shanxi, Peoples R China
Bai, Liang
Nieto, Juan J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Santiago de Compostela, Fac Matemat, Dept Anal Matemat Estadist & Optimizac, Santiago De Compostela 15782, SpainTaiyuan Univ Technol, Coll Math, Taiyuan 030024, Shanxi, Peoples R China