Solid oxide electrolysis cell 3D simulation using artificial neural network for cathodic process description

被引:29
作者
Grondin, D. [1 ,2 ]
Deseure, J. [1 ]
Ozil, P. [1 ]
Chabriat, J. -P. [2 ]
Grondin-Perez, B. [2 ]
Brisse, A. [3 ]
机构
[1] Univ La Reunion, Lab Energet Elect & Procedes LE2P, F-97715 St Denis, France
[2] Domaine Univ, PHELMA Grenoble INP, LEPMI, UMR CNRS Grenoble INP UJF UdS 5279, F-38402 St Martin Dheres, France
[3] European Inst Energy Res EIFER, D-76131 Karlsruhe, Germany
关键词
High-temperature electrolysis; 3D modeling; Multiphysics; Artificial neural network; Multiscale; HYDROGEN-PRODUCTION; PERFORMANCE;
D O I
10.1016/j.cherd.2012.06.003
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
An artificial neural network (ANN) is used for modeling electrochemical process in a porous cathode of SOEC. The neural network has the following input parameters: the overvoltage, the hydrogen and steam composition at electrode/electrolyte interface. Data for training and validating the ANN simulator is extracted from a validated model. Once the model is identified, the ANN can be successfully used for simulating electrochemical behavior of a SOEC electrode. The analytical expression of the network has been implemented in a three-dimensional multiphysics model of SOEC serial repeat unit (SRU). The expression takes into account micro-scale effects in the macro-scale model with a minimum cost of computation time. Gas flow velocity, species concentrations, current density and temperature distributions through the SRU have been calculated. It has been shown that the ANN could be used in the macro-scale model giving coherent results. (C) 2012 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:134 / 140
页数:7
相关论文
共 19 条
  • [1] Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance
    Aguiar, P
    Adjiman, CS
    Brandon, NP
    [J]. JOURNAL OF POWER SOURCES, 2004, 138 (1-2) : 120 - 136
  • [2] Artificial neural network simulator for SOFC performance prediction
    Arriagada, J
    Olausson, P
    Selimovic, A
    [J]. JOURNAL OF POWER SOURCES, 2002, 112 (01) : 54 - 60
  • [3] Bard A.J, 2002, Student Solutions Manual to accompany Electrochemical Methods: Fundamentals and Applicaitons, V2e
  • [4] Bird R B., 2002, Transportphenomena
  • [5] Hybrid sulfur cycle for H2 production: A sensitivity study of the electrolysis step in a filter-press cell
    Charton, Sophie
    Janvier, Josselin
    Rivalier, Patrick
    Chainet, Eric
    Caire, Jean-Pierre
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (04) : 1537 - 1547
  • [6] CHEN S, 1992, INT J CONTROL, V56, P319, DOI [10.1080/00207179208934317, 10.1080/00207179008934126]
  • [7] The Use of Conventional SOFC Electrodes in High Temperature Water Electrolysis Mode: An Electrochemical Study of Ni-Cermet and LSM
    Grondin, D.
    Grunbaum, N.
    Deseure, J.
    Ozil, P.
    [J]. SOLID OXIDE FUEL CELLS 11 (SOFC-XI), 2009, 25 (02): : 1007 - 1014
  • [8] Computing approach of cathodic process within solid oxide electrolysis cell: Experiments and continuum model validation
    Grondin, D.
    Deseure, J.
    Ozil, P.
    Chabriat, J. -P.
    Grondin-Perez, B.
    Brisse, A.
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (22) : 9561 - 9567
  • [9] Simulation of a high temperature electrolyzer
    Grondin, Dominique
    Deseure, Jonathan
    Brisse, Annabelle
    Zahid, Mohsine
    Ozil, Patrick
    [J]. JOURNAL OF APPLIED ELECTROCHEMISTRY, 2010, 40 (05) : 933 - 941
  • [10] Progress in high-temperature electrolysis for hydrogen production using planar SOFC technology
    Herring, J. Stephen
    O'Brien, James E.
    Stoots, Carl M.
    Hawkes, G. L.
    Hartvigsen, Joseph J.
    Shahnam, Mehrdad
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (04) : 440 - 450