New nonoverlapping domain decomposition methods for the harmonic Maxwell system

被引:43
作者
Rodríguez, AA [1 ]
Gerardo-Giorda, L [1 ]
机构
[1] Univ Trent, Dipartimento Matemat, I-38050 Trento, Italy
关键词
domain decomposition methods; harmonic Maxwell system; optimized interface conditions;
D O I
10.1137/040608696
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a nonoverlapping domain decomposition method for the harmonic Maxwell equations with a new kind of interface condition. Using Fourier analysis we derive suitable families of transmission conditions in R-3 that involve second order tangential differential operators and that guarantee convergence for both propagative and evanescent modes. Such families depend upon parameters that are chosen to optimize the convergence rate of the corresponding iterative algorithm. We then propose iterative solvers for the Maxwell equations based on a domain decomposition procedure where such conditions are enforced on the interface. Some numerical results for a two-domain decomposition show the effectiveness of the optimized interface conditions.
引用
收藏
页码:102 / 122
页数:21
相关论文
共 9 条
[1]  
Bossavit A., 1998, ELECTROMAGNETISM SER, V2
[2]  
Chevalier P., 1998, THESIS U PARIS 6, P72
[3]   A new interface condition in the non-overlapping domain decomposition method for the Maxwell equations [J].
Collino, P ;
Delbue, G ;
Joly, P ;
Piacentini, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 148 (1-2) :195-207
[4]  
DESPRES P, 1992, ITERATIVE METHODS LI, P475
[5]   Optimized Schwarz methods without overlap for the Helmholtz equation [J].
Gander, MJ ;
Magoulès, F ;
Nataf, F .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 24 (01) :38-60
[6]  
Monk P., 2003, FINITE ELEMENT METHO
[7]   MIXED FINITE-ELEMENTS IN IR3 [J].
NEDELEC, JC .
NUMERISCHE MATHEMATIK, 1980, 35 (03) :315-341
[8]   INCOMPRESSIBLE MIXED FINITE-ELEMENTS FOR STOKES EQUATIONS [J].
NEDELEC, JC .
NUMERISCHE MATHEMATIK, 1982, 39 (01) :97-112
[9]  
Quarteroni A., 1999, NUMER MATH SCI COMP