Nonlinear autoregressive integrated neural network model for short-term load forecasting

被引:58
作者
Chow, TWS
Leung, CT
机构
[1] Department of Electronic Engineering, City University of Hong Kong, Kowloon
关键词
short-term load forecasting; weather compensation neural network; nonlinear autoregressive integrated model;
D O I
10.1049/ip-gtd:19960600
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel neural network technique for electric load forecasting based on weather compensation is presented. The proposed method is a nonlinear generalisation of Box and Jenkins approach for nonstationary time-series prediction. A nonlinear autoregressive integrated (NARI) model is identified to be the most appropriate model to include the weather compensation in short-term electric load forecasting. A weather compensation neural network based on an NARI model is implemented for one-day ahead electric load forecasting. This weather compensation neural network can accurately predict the change of electric load consumption of the coming day. The results, based on Hong Kong Island historical load indicate that this methodology is capable of providing more accurate load forecast with a 0.9% reduction in forecast error.
引用
收藏
页码:500 / 506
页数:7
相关论文
共 50 条
  • [41] Short-term Load Forecasting Method Based on CNN-LSTM Hybrid Neural Network Model
    Lu J.
    Zhang Q.
    Yang Z.
    Tu M.
    Lu J.
    Peng H.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2019, 43 (08): : 131 - 137
  • [42] A Novel Nonlinear Combined Forecasting System for Short-Term Load Forecasting
    Tian, Chengshi
    Hao, Yan
    ENERGIES, 2018, 11 (04)
  • [43] Convolutional residual network to short-term load forecasting
    Ziyu Sheng
    Huiwei Wang
    Guo Chen
    Bo Zhou
    Jian Sun
    Applied Intelligence, 2021, 51 : 2485 - 2499
  • [44] Grouping Model Application on Artificial Neural Networks for Short-term Load Forecasting
    Zhang, Shunhua
    Lian, Jingjing
    Zhao, Zhiying
    Xu, Huijun
    Liu, Jing
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 6203 - 6206
  • [45] Research on Short-term load forecasting on Elman Network
    An Yun
    Sun Dingzhong
    Zhang Xi
    He Zengbiao
    Pang Zhigang
    Wang Jian
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 2786 - 2790
  • [46] Short-term load forecasting with dense average network
    Liao, Zhifang
    Pan, Haihui
    Huang, Xuechun
    Mo, Ronghui
    Fan, Xiaoping
    Chen, Huanwen
    Liu, Limin
    Li, Yan
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 186
  • [47] Convolutional residual network to short-term load forecasting
    Sheng, Ziyu
    Wang, Huiwei
    Chen, Guo
    Zhou, Bo
    Sun, Jian
    APPLIED INTELLIGENCE, 2021, 51 (04) : 2485 - 2499
  • [48] Short-term load forecasting of power system based on improved bp neural network
    Li S.
    International Journal of Circuits, Systems and Signal Processing, 2020, 14 : 840 - 846
  • [49] Kohonen neural network and wavelet transform based approach to short-term load forecasting
    Kim, CI
    Yu, IK
    Song, YH
    ELECTRIC POWER SYSTEMS RESEARCH, 2002, 63 (03) : 169 - 176
  • [50] Short-Term Load Forecasting Based on Deep Learning Bidirectional LSTM Neural Network
    Cai, Changchun
    Tao, Yuan
    Zhu, Tianqi
    Deng, Zhixiang
    APPLIED SCIENCES-BASEL, 2021, 11 (17):