Darboux transformation and vector solitons for a variable-coefficient coherently coupled nonlinear Schrodinger system in nonlinear optics

被引:3
作者
Chai, Jun
Tian, Bo [1 ]
Chai, Han-Peng
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
nonlinear birefringent optical fiber; variable-coefficient coupled nonlinear Schrodinger system; Darboux transformation; vector soliton interaction; ROGUE-WAVE; LAX PAIR; EQUATIONS; AMPLITUDES; STABILITY; FIBERS;
D O I
10.1117/1.OE.55.11.116113
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Efforts have been put into investigating a variable-coefficient coherently coupled nonlinear Schrodinger system with the alternate signs of nonlinearities, describing the propagation of the waves in the nonlinear birefringent optical fiber. Via the Lax pair, Darboux transformation for the system is derived. Then, we derive the vector one-and two-soliton solutions. Figures are displayed to help us study the properties of the vector solitons: with the strength of the four-wave mixing terms gamma(t) as a constant, the vector soliton propagates with the unvarying velocity and amplitude; with gamma(t) being a time-dependent function, amplitude and velocity of the vector soliton keep varying during the propagation; bell-and M-shaped solitons can both be observed in q(2) mode, while we just observe the bell-shaped soliton in q(1) mode, where q(1) and q(2) are the two slowly varying envelopes of the propagating waves; head-on and overtaking interactions between the vector two solitons are both presented. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:5
相关论文
共 30 条
[21]   Persistent bright solitons in sign-indefinite coupled nonlinear Schrodinger equations with a time-dependent harmonic trap [J].
Radha, R. ;
Vinayagam, P. S. ;
Sudharsan, J. B. ;
Malomed, Boris A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 31 (1-3) :30-39
[22]   Nonlinear tunneling of optical soliton in 3 coupled NLS equation with symbolic computation [J].
Rajan, M. S. Mani ;
Mahalingam, A. ;
Uthayakumar, A. .
ANNALS OF PHYSICS, 2014, 346 :1-13
[23]   Solitons and quasi-periodic behaviors in an inhomogeneous optical fiber [J].
Yang, Jin-Wei ;
Gao, Yi-Tian ;
Su, Chuan-Qi ;
Zuo, Da-Wei ;
Feng, Yu-Jie .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 42 :477-490
[24]   Optical soliton solutions for two coupled nonlinear Schrodinger systems via Darboux transformation [J].
Zhang, Hai-Qiang ;
Li, Juan ;
Xu, Tao ;
Zhang, Ya-Xing ;
Hu, Wei ;
Tian, Bo .
PHYSICA SCRIPTA, 2007, 76 (05) :452-460
[25]   Vector solitons in two-component Bose-Einstein condensates with tunable interactions and harmonic potential [J].
Zhang, Xiao-Fei ;
Hu, Xing-Hua ;
Liu, Xun-Xu ;
Liu, W. M. .
PHYSICAL REVIEW A, 2009, 79 (03)
[26]   Backlund Transformation and Soliton Solutions for a (3+1)-Dimensional Variable-Coefficient Breaking Soliton Equation [J].
Zhao, Chen ;
Gao, Yi-Tian ;
Lan, Zhong-Zhou ;
Yang, Jin-Wei .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (09) :797-805
[27]   Bilinear forms and dark-soliton solutions for a fifth-order variable-coefficient nonlinear Schrodinger equation in an optical fiber [J].
Zhao, Chen ;
Gao, Yi-Tian ;
Lan, Zhong-Zhou ;
Yang, Jin-Wei ;
Su, Chuan-Qi .
MODERN PHYSICS LETTERS B, 2016, 30 (24)
[28]   Interaction of the nonautonomous soliton in the optical fiber [J].
Zuo, Da-Wei ;
Jia, Hui-Xian .
OPTIK, 2016, 127 (23) :11282-11287
[29]   Multi-Soliton Solutions of the Generalized Sawada-Kotera Equation [J].
Zuo, Da-Wei ;
Mo, Hui-Xia ;
Zhou, Hui-Ping .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (04) :305-309
[30]   Lax pair, rogue-wave and soliton solutions for a variable-coefficient generalized nonlinear Schrodinger equation in an optical fiber, fluid or plasma [J].
Zuo, Da-Wei ;
Gao, Yi-Tian ;
Xue, Long ;
Feng, Yu-Jie .
OPTICAL AND QUANTUM ELECTRONICS, 2016, 48 (01) :1-14