NEW GLOBAL STABILITY ESTIMATES FOR THE CALDERON PROBLEM IN TWO DIMENSIONS

被引:10
|
作者
Santacesaria, Matte [1 ]
机构
[1] Ecole Polytech, Ctr Math Appl, UMR 7641, F-91128 Palaiseau, France
关键词
Calderon problem; electrical impedance tomography; Schrodinger equation; global stability in 2D; generalized analytic functions; INVERSE CONDUCTIVITY PROBLEM; BOUNDARY-VALUE PROBLEM; EXPONENTIAL INSTABILITY; SCHRODINGER-EQUATION; LIPSCHITZ STABILITY; SCATTERING PROBLEM; PLANE; UNIQUENESS;
D O I
10.1017/S147474801200076X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a new global stability estimate for the Gel'fand-Calderon inverse problem on a two-dimensional bounded domain. Specifically, the inverse boundary value problem for the equation -Delta psi + nu psi = 0 on D is analysed, where nu is a smooth real-valued potential of conductivity type defined on a bounded planar domain D. The main feature of this estimate is that it shows that the smoother a potential is, the more stable its reconstruction is. Furthermore, the stability is proven to depend exponentially on the smoothness, in a sense to be made precise. The same techniques yield a similar estimate for the Calderon problem for electrical impedance tomography.
引用
收藏
页码:553 / 569
页数:17
相关论文
共 50 条
  • [1] New global stability estimates for the Gel'fand-Calderon inverse problem
    Novikov, R. G.
    INVERSE PROBLEMS, 2011, 27 (01)
  • [2] A global stability estimate for the Gel'fand-Calderon inverse problem in two dimensions
    Novikov, Roman
    Santacesaria, Matteo
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2010, 18 (07): : 765 - 785
  • [3] Global stability for the multi-channel Gel'fand-Calderon inverse problem in two dimensions
    Santacesaria, Matteo
    BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (07): : 731 - 744
  • [4] Stability estimates for the Calderon problem with partial data
    Caro, Pedro
    Ferreira, David Dos Santos
    Ruiz, Alberto
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (03) : 2457 - 2489
  • [5] THE CALDERON PROBLEM WITH PARTIAL DATA IN TWO DIMENSIONS
    Imanuvilov, Oleg Yu.
    Uhlmann, Gunther
    Yamamoto, Masahiro
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (03) : 655 - 691
  • [6] Calderon problem for Maxwell's equations in two dimensions
    Imanuvilov, Oleg Y.
    Yamamoto, Masahiro
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2016, 24 (03): : 351 - 355
  • [7] Stability estimates for an inverse problem for the Schrodinger equation at negative energy in two dimensions
    Santacesaria, Matteo
    APPLICABLE ANALYSIS, 2013, 92 (08) : 1666 - 1681
  • [8] Global uniqueness and reconstruction for the multi-channel Gel'fand-Calderon inverse problem in two dimensions
    Novikov, Roman G.
    Santacesaria, Matteo
    BULLETIN DES SCIENCES MATHEMATIQUES, 2011, 135 (05): : 421 - 434
  • [9] An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions
    Novikov, R. G.
    IMAGING MICROSTRUCTURES: MATHEMATICAL AND COMPUTATIONAL CHALLENGES, 2009, 494 : 161 - 184
  • [10] Uniqueness in the Calderon problem and bilinear restriction estimates
    Ham, Seheon
    Kwon, Yehyun
    Lee, Sanghyuk
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 281 (08)