Adversarial Learning and Interpolation Consistency for Unsupervised Domain Adaptation

被引:5
|
作者
Zhao, Xin [1 ,2 ]
Wang, Shengsheng [1 ,2 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China
[2] Jilin Univ, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Changchun 130012, Peoples R China
关键词
Interpolation; Feature extraction; Task analysis; Adaptation models; Data models; Deep learning; Predictive models; Domain adaptation; transfer learning; deep learning; image classification;
D O I
10.1109/ACCESS.2019.2956103
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unsupervised domain adaptation (UDA) aims to learn a prediction model for the target domain given labeled source data and unlabeled target data. Impressive progress has been made by adversarial learning-based methods that align distributions across domains through deceiving a domain discriminator network. However, these methods only try to align two domains and neglect the boundaries between classes, which may lead to false alignment and poor generalization performance. In contrast, consistency-enforcing methods exploit the target data posterior distribution to make the target features far away from decision boundaries. Despite their efficacy, these approaches require additional intensity augmentation to align distributions when encountering datasets with large domain discrepancy. To solve the above problems, we propose a novel UDA method that unifies the adversarial learning-based method and consistency-enforcing method together to take both domain alignment and boundaries between classes into consideration. In addition to the supervised classification on the source domain and the adversarial domain adaptation, we introduce interpolation consistency into the UDA task. To be specific, we first construct robust and informative pseudo labels for target samples, and then we encourage the prediction at an interpolation of unlabeled target samples to be consistent with the interpolation of the pseudo labels of these samples. The extensive empirical results demonstrate that our method achieves state-of-the-art results on both digit classification and object recognition tasks.
引用
收藏
页码:170448 / 170456
页数:9
相关论文
共 50 条
  • [21] Unsupervised Adversarial Domain Adaptation Network for Semantic Segmentation
    Liu, Wei
    Su, Fulin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (11) : 1978 - 1982
  • [22] Unsupervised Adversarial Domain Adaptation for Cross-Domain Face Presentation Attack Detection
    Wang, Guoqing
    Han, Hu
    Shan, Shiguang
    Chen, Xilin
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2021, 16 : 56 - 69
  • [23] Weighted Adversarial Domain Adaptation for Machine Remaining Useful Life Prediction
    Wu, Kangkai
    Li, Jingjing
    Zuo, Lin
    Lu, Ke
    Shen, Heng Tao
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [24] Contrastive Adversarial Domain Adaptation for Machine Remaining Useful Life Prediction
    Ragab, Mohamed
    Chen, Zhenghua
    Wu, Min
    Foo, Chuan Sheng
    Kwoh, Chee Keong
    Yan, Ruqiang
    Li, Xiaoli
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (08) : 5239 - 5249
  • [25] Unsupervised domain adaptation with adversarial distribution adaptation network
    Qiang Zhou
    Wen’an Zhou
    Shirui Wang
    Ying Xing
    Neural Computing and Applications, 2021, 33 : 7709 - 7721
  • [26] Unsupervised domain adaptation with adversarial distribution adaptation network
    Zhou, Qiang
    Zhou, Wen'an
    Wang, Shirui
    Xing, Ying
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (13) : 7709 - 7721
  • [27] Cross-Domain Graph Convolutions for Adversarial Unsupervised Domain Adaptation
    Zhu, Ronghang
    Jiang, Xiaodong
    Lu, Jiasen
    Li, Sheng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (08) : 3847 - 3858
  • [28] Mutual Variational Inference: An Indirect Variational Inference Approach for Unsupervised Domain Adaptation
    Chen, Jiahong
    Wang, Jing
    de Silva, Clarence W.
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (11) : 11491 - 11503
  • [29] Unsupervised Adversarial Domain Adaptation for Sim-to-Real Transfer of Tactile Images
    Jing, Xingshuo
    Qian, Kun
    Jianu, Tudor
    Luo, Shan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [30] Adversarial Unsupervised Domain Adaptation for Hand Gesture Recognition Using Thermal Images
    Dayal, Aveen
    Aishwarya, M.
    Abhilash, S.
    Mohan, C. Krishna
    Kumar, Abhinav
    Cenkeramaddi, Linga Reddy
    IEEE SENSORS JOURNAL, 2023, 23 (04) : 3493 - 3504