Adversarial Learning and Interpolation Consistency for Unsupervised Domain Adaptation

被引:5
|
作者
Zhao, Xin [1 ,2 ]
Wang, Shengsheng [1 ,2 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China
[2] Jilin Univ, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Changchun 130012, Peoples R China
关键词
Interpolation; Feature extraction; Task analysis; Adaptation models; Data models; Deep learning; Predictive models; Domain adaptation; transfer learning; deep learning; image classification;
D O I
10.1109/ACCESS.2019.2956103
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unsupervised domain adaptation (UDA) aims to learn a prediction model for the target domain given labeled source data and unlabeled target data. Impressive progress has been made by adversarial learning-based methods that align distributions across domains through deceiving a domain discriminator network. However, these methods only try to align two domains and neglect the boundaries between classes, which may lead to false alignment and poor generalization performance. In contrast, consistency-enforcing methods exploit the target data posterior distribution to make the target features far away from decision boundaries. Despite their efficacy, these approaches require additional intensity augmentation to align distributions when encountering datasets with large domain discrepancy. To solve the above problems, we propose a novel UDA method that unifies the adversarial learning-based method and consistency-enforcing method together to take both domain alignment and boundaries between classes into consideration. In addition to the supervised classification on the source domain and the adversarial domain adaptation, we introduce interpolation consistency into the UDA task. To be specific, we first construct robust and informative pseudo labels for target samples, and then we encourage the prediction at an interpolation of unlabeled target samples to be consistent with the interpolation of the pseudo labels of these samples. The extensive empirical results demonstrate that our method achieves state-of-the-art results on both digit classification and object recognition tasks.
引用
收藏
页码:170448 / 170456
页数:9
相关论文
共 50 条
  • [1] Extending Interpolation Consistency Training for Unsupervised Domain Adaptation
    Gharib, Shayan
    Klami, Arto
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [2] Class Consistency Driven Unsupervised Deep Adversarial Domain Adaptation
    Rakshit, Sayan
    Chaudhuri, Ushasi
    Banerjee, Biplab
    Chaudhuri, Subhasis
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 667 - 676
  • [3] Adversarial Reinforcement Learning for Unsupervised Domain Adaptation
    Zhang, Youshan
    Ye, Hui
    Davison, Brian D.
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, : 635 - 644
  • [4] Class Discriminative Adversarial Learning for Unsupervised Domain Adaptation
    Zhou, Lihua
    Ye, Mao
    Zhu, Xiatian
    Li, Shuaifeng
    Liu, Yiguang
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 4318 - 4326
  • [5] Collaborative Adversarial Learning for Unsupervised Federated Domain Adaptation
    Chi, Hao
    Zhang, Yingqi
    Xu, Shuo
    Zhang, Rui
    Xia, Hui
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT II, KSEM 2024, 2024, 14885 : 346 - 357
  • [6] Rethinking Neighborhood Consistency Learning on Unsupervised Domain Adaptation
    Liu, Chang
    Wang, Lichen
    Fu, Yun
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 7247 - 7254
  • [7] Unsupervised adversarial domain adaptation based on interpolation image for fish detection in aquaculture
    Zhao, Tengyun
    Shen, Zhencai
    Zou, Hui
    Zhong, Ping
    Chen, Yingyi
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 198
  • [8] Unsupervised Domain Adaptation for ToF Data Denoising with Adversarial Learning
    Agresti, Gianluca
    Schaefer, Henrik
    Sartor, Piergiorgio
    Zanuttigh, Pietro
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 5569 - 5576
  • [9] Joint bi-adversarial learning for unsupervised domain adaptation
    Tian, Qing
    Zhou, Jiazhong
    Chu, Yi
    KNOWLEDGE-BASED SYSTEMS, 2022, 248
  • [10] Unsupervised domain adaptation with adversarial learning for mass detection in mammogram
    Shen, Rongbo
    Yao, Jianhua
    Yan, Kezhou
    Tian, Kuan
    Jiang, Cheng
    Zhou, Ke
    NEUROCOMPUTING, 2020, 393 (393) : 27 - 37