Studies of a layered-spinel Li[Ni1/3Mn2/3]O2 cathode material for Li-ion batteries synthesized by a hydrothermal precipitation

被引:11
作者
Nayak, Prasant Kumar [1 ]
Grinblat, Judith [1 ]
Levi, Mikhael [1 ]
Levi, Elena [1 ]
Zitoun, David [1 ]
Markovsky, Boris [1 ]
Aurbach, Doron [1 ]
机构
[1] Bar Ilan Univ, Dept Chem, IL-5290002 Ramat Gan, Israel
来源
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS | 2016年 / 213卷
基金
以色列科学基金会;
关键词
JAHN-TELLER DISTORTION; LITHIUM BATTERIES; HIGH-CAPACITY; HIGH-VOLTAGE; ELECTROCHEMICAL PERFORMANCE; PHASE-TRANSFORMATION; CO ELECTRODES; IN-SITU; MN; NI;
D O I
10.1016/j.mseb.2016.04.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work continues our research on integrated "layered-spinel" high-capacity cathode material Li[Ni1/3Mn2/3]O-2 [30]. This material operated at potentials >4.6V and demonstrated an advantageous cycling stability compared to high-voltage spinel LiNi0.5Mn1.5O4. In the present study, the Li[Ni1/3Mn2/3]O-2 material was synthesized by a hydrothermal precipitation. The Rietveld analysis of XRD patterns indicated the presence of two layered structure phases: a monoclinic Li2MnO3 (about 58%) and a rhombohedral LiNiO2 (24%), along with spinel LiNi0.5Mn1.5O4 (17%) and rock salt Li0.2Mn0.2Ni0.5O (1%) phases. We demonstrate an interesting phenomenon of this electrode activation upon cycling from 100 to 220 mAh g(-1) in the potential range of 2.3-4.9 V and stabilization followed by lowering the capacity to 89.5% of the maximal value after 100 cycles. It is suggested that the high capacity resulted from the activation of Li[Li-1/3 Mn-2/3]O-2 and participation of spinel component upon cycling to potential >= 4.5V. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:131 / 139
页数:9
相关论文
共 50 条
  • [31] Al2O3 coated Li1.2Ni0.2Mn0.2Ru0.4O2 as cathode material for Li-ion batteries
    Su, Na
    Lyu, Yingchun
    Gu, Run
    Guo, Bingkun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 741 : 398 - 403
  • [32] Increased Capacity of LiNi1/3Co1/3Mn1/3O2-Li[Li1/3Mn2/3]O2 Cathodes by MnOx-surface Modification for Lithium-Ion Batteries
    Wang, Jun
    He, Xin
    Kloepsch, Richard
    Wang, Sihui
    Hoffmann, Bjoern
    Jeong, Sangsik
    Yang, Yong
    Li, Jie
    ENERGY TECHNOLOGY, 2014, 2 (02) : 188 - 193
  • [33] The Positive Roles of Integrated Layered-Spinel Structures Combined with Nanocoating in Low-Cost Li-Rich Cathode Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 for Lithium-Ion Batteries
    Zhao, Taolin
    Chen, Shi
    Chen, Renjie
    Li, Li
    Zhang, Xiaoxiao
    Xie, Man
    Wu, Feng
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (23) : 21711 - 21720
  • [34] Facile synthesis and electrochemical properties of layered Li[Ni1/3Mn1/3Co1/3]O2 as cathode materials for lithium-ion batteries
    Yingfang Zhu
    Jingwei You
    Haifu Huang
    Guangxu Li
    Wenzheng Zhou
    Jin Guo
    Frontiers of Materials Science, 2017, 11 : 155 - 161
  • [35] Electrochemical properties of α-MoO3-coated Li [Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries
    Wang, Chunlei
    Zhou, Fei
    Chen, Kangmin
    Kong, Jizhou
    Jiang, Youxuan
    Yan, Guozhen
    Li, Junxiu
    Yu, Chao
    Tang, Wei-Ping
    ELECTROCHIMICA ACTA, 2015, 176 : 1171 - 1181
  • [36] Progress of Research on the Li-rich Cathode Materials xLi2MnO3• (1-x) LiMO2 (M=Co, Fe, Ni1/2Mn1/2 ... ) for Li-ion Batteries
    Zhao Yu-Juan
    Feng Hai-Lan
    Zhao Chun-Song
    Sun Zhao-Qin
    JOURNAL OF INORGANIC MATERIALS, 2011, 26 (07) : 673 - 679
  • [37] Effects of amorphous V2O5 coating on the electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as cathode material for Li-ion batteries
    He, Huibing
    Zan, Ling
    Zhang, Youxiang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 680 : 95 - 104
  • [38] Preparation and characterization of carbon-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode material for lithium-ion batteries
    Lin, Bin
    Wen, Zhaoyin
    Wang, Xiuyan
    Liu, Yu
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2010, 14 (10) : 1807 - 1811
  • [39] Li-Rich Layered Cathode Material Li[Li0.157Ni0.138Co0.134Mn0.571]O2 Synthesized with Solid-State Coordination Method
    Liao, Da-Qian
    Xia, Chao-Yang
    Xi, Xiao-Ming
    Zhou, Chun-Xian
    Xiao, Ke-Song
    Chen, Xiao-Qing
    Qin, Shi-Biao
    JOURNAL OF ELECTRONIC MATERIALS, 2016, 45 (06) : 2981 - 2986
  • [40] Surface modification of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide with Li-Mn-PO4 as the cathode for lithium-ion batteries
    Qiao, Q. Q.
    Zhang, H. Z.
    Li, G. R.
    Ye, S. H.
    Wang, C. W.
    Gao, X. P.
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (17) : 5262 - 5268