Physiological and Biochemical Responses of four cassava cultivars to drought stress

被引:64
|
作者
Zhu, Yanmei [1 ]
Luo, Xinglu [1 ,2 ]
Nawaz, Gul [1 ]
Yin, Jingjing [1 ]
Yang, Jingni [1 ]
机构
[1] Guangxi Univ, Coll Agr, Nanning 530005, Peoples R China
[2] State Key Lab Conservat & Utilizat Subtrop Agrobi, Nanning 530005, Peoples R China
基金
中国国家自然科学基金;
关键词
TRITICUM-AESTIVUM L; ANTIOXIDANT ENZYMES; OXIDATIVE STRESS; WATER-DEFICIT; CHLOROPHYLL CONTENT; HYDROGEN-PEROXIDE; GENE-EXPRESSION; SALICYLIC-ACID; TOLERANCE; LEAVES;
D O I
10.1038/s41598-020-63809-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The antioxidant mechanism is crucial for resisting oxidative damage induced by drought stress in plants. Different antioxidant mechanisms may contribute to the tolerance of cassava to drought stress, but for a specific genotype, the response is still unknown. The objective of this study was to investigate antioxidant response and physiological changes of four cassava genotypes under water stress conditions, by keeping the soil moisture content as 80% (control), 50% (medium), 20% (severe) of field capacity for a week. Genotypes RS01 and SC124 were keeping higher relative water content (RWC) and relative chlorophyll content (SPAD value) and less affected by oxidative stress than SC205 and GR4 under drought stress. RS01 just showed slight membrane damage and oxidative stress even under severe drought conditions. A principal component analysis showed that cassava plant water status was closely related to the antioxidant mechanism. Antioxidant response in genotypes RS01 and SC124 under drought stress might attribute to the increased accumulation of ascorbate (AsA) and glutathione (GSH) content and higher superoxide dismutase (SOD) and catalase (CAT) activities, which explained by the up-regulation of Mn-SOD and CAT genes. However, Genotypes SC205 and GR4 mainly depended on the accumulation of total phenolics (TP) and increased glutathione reductase (GR) activity, which attribute to the up-regulation of the GR gene. Our findings could provide vital knowledge for refining the tactics of cultivation and molecular breeding with drought avoidance in cassava.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Morphological, biochemical, and physiological responses of canola cultivars to drought stress
    Oskuei, B. Kazemi
    Bandehagh, A.
    Farajzadeh, D.
    Lajayer, B. Asgari
    Rajput, V. D.
    Astatkie, T.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2023, 20 (12) : 13551 - 13560
  • [2] Morphological, physiological and biochemical responses of plants to drought stress
    Anjum, Shakeel Ahmad
    Xie, Xiao-yu
    Wang, Long-chang
    Saleem, Muhammad Farrukh
    Man, Chen
    Lei, Wang
    AFRICAN JOURNAL OF AGRICULTURAL RESEARCH, 2011, 6 (09): : 2026 - 2032
  • [3] Physiological, biochemical and molecular responses in four Prunus rootstocks submitted to drought stress
    Jimenez, Sergio
    Dridi, Jihene
    Gutierrez, Diego
    Moret, David
    Irigoyen, Juan J.
    Moreno, Maria A.
    Gogorcena, Yolanda
    TREE PHYSIOLOGY, 2013, 33 (10) : 1061 - 1075
  • [4] Morphological, biochemical, and physiological responses of canola cultivars to drought stress
    B. Kazemi Oskuei
    A. Bandehagh
    D. Farajzadeh
    B. Asgari Lajayer
    V. D. Rajput
    T. Astatkie
    International Journal of Environmental Science and Technology, 2023, 20 : 13551 - 13560
  • [5] Physiological and biochemical responses of almond rootstocks to drought stress
    Yildirim, Adnan Nurhan
    San, Bekir
    Yildirim, Fatma
    Celik, Civan
    Bayar, Berna
    Karakurt, Yasar
    TURKISH JOURNAL OF AGRICULTURE AND FORESTRY, 2021, 45 (04) : 522 - 532
  • [6] Physiological and Biochemical Responses in Two Ornamental Shrubs to Drought Stress
    Toscano, Stefania
    Farieri, Elisa
    Ferrante, Antonio
    Romano, Daniela
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [7] Physiological and Biochemical Responses of Almond (Prunus dulcis) Cultivars to Drought Stress in Semi-Arid Conditions in Iran
    Bakhtiari, Esmaeil Safavi
    Mousavi, Asghar
    Yadegari, Mehrab
    Haghighati, Bijan
    Martinez-Garcia, Pedro Jose
    PLANTS-BASEL, 2025, 14 (05):
  • [8] Comparative Physiological, Biochemical, and Leaf Proteome Responses of Contrasting Wheat Varieties to Drought Stress
    Moloi, Sellwane J.
    Alqarni, Ali O.
    Brown, Adrian P.
    Goche, Tatenda
    Shargie, Nemera G.
    Moloi, Makoena J.
    Gokul, Arun
    Chivasa, Stephen
    Ngara, Rudo
    PLANTS-BASEL, 2024, 13 (19):
  • [9] PHYSIOLOGICAL RESPONSES OF FOUR PEANUT CULTIVARS TO CADMIUM STRESS
    Liu, Jun
    Zong, Haiying
    FRESENIUS ENVIRONMENTAL BULLETIN, 2020, 29 (12A): : 11382 - 11389
  • [10] Physiological Responses of Bread Wheat (Triticum aestivum) Cultivars to Drought Stress and Exogenous Methyl Jasmonate
    Javadipour, Zahra
    Balouchi, Hamidreza
    Movahhedi Dehnavi, Mohsen
    Yadavi, Alireza
    JOURNAL OF PLANT GROWTH REGULATION, 2022, 41 (08) : 3433 - 3448