Degradation of hyaluronan by a Hya12-type hyaluronidase affects pattern formation of vitelline vessels during embryogenesis of Xenopus laevis

被引:18
作者
Müllegger, J [1 ]
Lepperdinger, G [1 ]
机构
[1] Austrian Acad Sci, Inst Mol Biol, Dept Biochem, A-5020 Salzburg, Austria
基金
奥地利科学基金会;
关键词
hyaluronan; hyaluranidase; extracellular matrix; embryogenesis; vertebrate development;
D O I
10.1016/S0925-4773(01)00593-7
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A Hyal2-type hyaluronidase of Xenopus laevis (Xhyal2) was characterized by molecular cloning, biochemical analysis and ectopic overexpression in embryos. When expressed in Xenopus oocytes, Xhyal2 exists as a soluble protein in the extracellular space and in intercellular compartments as well as being attached to the cell surface through a glycosyl-phophatidyl-inositol anchor, This enzyme specifically degrades hyaluronan not only at acidic pH values but more slowly also under physiological conditions. Xhyal2 is differentially expressed during embi-yogenesis. Particularly striking is the high level of expression in the developing brain, the head mesenchyme and the pronephros. Elevated levels of mRNA were also found in endothelial cells which will later form vascular structures. Ectopic overexpression of Xhyal2 in frog embryos causes loss of hyaluronan in the cellular environment. This causes severe defects in the assembly of the highly structured plexus of the vitelline vessels from prevascular endothelial cells. Our data support the notion that the level of Xhyal2 expression determines the organization of the extracellular environment so that cells can merge and/or migrate within an originally impenetrable matrix. (C) 2002 Elsevier Science Ireland Ltd. Ail rights reserved.
引用
收藏
页码:25 / 35
页数:11
相关论文
共 52 条
  • [1] Auerbach, 1991, DEV VASCULAR SYSTEM, P25
  • [2] BALAZS EA, 1973, BIOL FIBROBLAST, P237
  • [3] BOTHNERWIK H, 1998, WENNERGREN INT SERIE, V72, P25
  • [4] BROWN JJG, 1993, DEVELOPMENT, V117, P483
  • [5] Cleaver O, 1997, DEV DYNAM, V210, P66, DOI 10.1002/(SICI)1097-0177(199709)210:1<66::AID-AJA7>3.3.CO
  • [6] 2-S
  • [7] Expression of a new G protein-coupled receptor X-msr is associated with an endothelial lineage in Xenopus laevis
    Devic, E
    Paquereau, L
    Vernier, P
    Knibiehler, B
    Audigier, Y
    [J]. MECHANISMS OF DEVELOPMENT, 1996, 59 (02) : 129 - 140
  • [8] VEGF regulates cell behavior during vasculogenesis
    Drake, CJ
    LaRue, A
    Ferrara, N
    Little, CD
    [J]. DEVELOPMENTAL BIOLOGY, 2000, 224 (02) : 178 - 188
  • [9] Morphogenesis of the first blood vessels
    Drake, CJ
    Hungerford, JE
    Little, CD
    [J]. MORPHOGENESIS: CELLULAR INTERACTIONS, 1998, 857 : 155 - 179
  • [10] DIFFERENTIAL CELL-ADHESION MAY RESULT FROM NONSPECIFIC INTERACTIONS BETWEEN CELL-SURFACE GLYCOPROTEINS
    EDWARDS, PAW
    [J]. NATURE, 1978, 271 (5642) : 248 - 249