Joint convergence of several copies of different patterned random matrices

被引:2
作者
Basu, Riddhipratim [1 ]
Bose, Arup [2 ]
Ganguly, Shirshendu [3 ]
Hazra, Rajat Subhra [4 ]
机构
[1] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[2] Indian Stat Inst, Stat & Math Unit, Kolkata, India
[3] Univ Washington, Dept Math, Seattle, WA 98195 USA
[4] Univ Zurich, Inst Math, CH-8001 Zurich, Switzerland
关键词
Random matrices; free probability; joint convergence; patterned matrices; Toeplitz matrix; Hankel matrix; Reverse Circulant matrix; Symmetric Circulant matrix; Wigner matrix; ASYMPTOTIC FREENESS; LARGEST EIGENVALUE; FREE CONVOLUTION; WIGNER; MOMENTS; DEFORMATIONS; UNITARY; REAL; LAWS;
D O I
10.1214/EJP.v17-1970
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the joint convergence of independent copies of several patterned matrices in the non-commutative probability setup. In particular, joint convergence holds for the well known Wigner, Toeplitz, Hankel, Reverse Circulant and Symmetric Circulant matrices. We also study some properties of the limits. In particular, we show that copies of Wigner becomes asymptotically free with copies of any of the above other matrices.
引用
收藏
页码:1 / 33
页数:33
相关论文
共 42 条
[21]   On slow-fading MIMO systems with nonseparable correlation [J].
Far, Reza Rashidi ;
Oraby, Tamer ;
Bryc, Wlodek ;
Speicher, Roland .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (02) :544-553
[22]   The largest eigenvalue of rank one deformation of large Wigner matrices [J].
Feral, Delphine ;
Peche, Sandrine .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 272 (01) :185-228
[23]  
Fulton W, 1998, ASTERISQUE, P255
[24]   Distribution of eigenvalues for the ensemble of real symmetric Toeplitz matrices [J].
Hammond, C ;
Miller, SJ .
JOURNAL OF THEORETICAL PROBABILITY, 2005, 18 (03) :537-566
[25]  
Hiai F., 2000, MATH SURVEYS MONOGRA, V77
[26]  
HIAI F, 2000, ACTA SCI MATH, V66, P809
[27]   The spectral laws of Hermitian block-matrices with large random blocks [J].
Oraby, Tamer .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 :465-476
[28]   On the law of addition of random matrices [J].
Pastur, L ;
Vasilchuk, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (02) :249-286
[29]   The largest eigenvalue of small rank perturbations of Hermitian random matrices [J].
Péché, S .
PROBABILITY THEORY AND RELATED FIELDS, 2006, 134 (01) :127-173
[30]   On the limit distributions of random matrices with independent or free entries [J].
Ryan, O .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 193 (03) :595-626