Advanced Carbon for Flexible and Wearable Electronics

被引:1026
作者
Wang, Chunya [1 ,2 ]
Xia, Kailun [1 ,2 ]
Wang, Huimin [1 ,2 ]
Liang, Xiaoping [1 ,2 ]
Yin, Zhe [1 ,2 ]
Zhang, Yingying [1 ,2 ]
机构
[1] Tsinghua Univ, Dept Chem, Minist Educ, Key Lab Organ Optoelectron & Mol Engn, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Ctr Nano & Micro Mech, Beijing 100084, Peoples R China
关键词
carbon nanotubes; graphene; natural-biomaterial-derived carbon; wearable health monitoring; wearable sensors; REDUCED GRAPHENE OXIDE; OXYGEN REDUCTION REACTION; TRANSPARENT CONDUCTIVE FILMS; HUMIDITY-SENSING PROPERTIES; METAL-FREE ELECTROCATALYSTS; CHEMICAL-VAPOR-DEPOSITION; HIGH-ENERGY DENSITY; ZINC-AIR BATTERIES; STRAIN SENSOR; HIGH-PERFORMANCE;
D O I
10.1002/adma.201801072
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Flexible and wearable electronics are attracting wide attention due to their potential applications in wearable human health monitoring and care systems. Carbon materials have combined superiorities such as good electrical conductivity, intrinsic and structural flexibility, light weight, high chemical and thermal stability, ease of chemical functionalization, as well as potential mass production, enabling them to be promising candidate materials for flexible and wearable electronics. Consequently, great efforts are devoted to the controlled fabrication of carbon materials with rationally designed structures for applications in next-generation electronics. Herein, the latest advances in the rational design and controlled fabrication of carbon materials toward applications in flexible and wearable electronics are reviewed. Various carbon materials (carbon nanotubes, graphene, natural-biomaterial-derived carbon, etc.) with controlled micro/nanostructures and designed macroscopic morphologies for high-performance flexible electronics are introduced. The fabrication strategies, working mechanism, performance, and applications of carbon-based flexible devices are reviewed and discussed, including strain/pressure sensors, temperature/humidity sensors, electrochemical sensors, flexible conductive electrodes/wires, and flexible power devices. Furthermore, the integration of multiple devices toward multifunctional wearable systems is briefly reviewed. Finally, the existing challenges and future opportunities in this field are summarized.
引用
收藏
页数:37
相关论文
共 313 条
[1]   Organic Solar Cells: A Review of Materials, Limitations, and Possibilities for Improvement [J].
Abdulrazzaq, Omar A. ;
Saini, Viney ;
Bourdo, Shawn ;
Dervishi, Enkeleda ;
Biris, Alexandru S. .
PARTICULATE SCIENCE AND TECHNOLOGY, 2013, 31 (05) :427-442
[2]   A stretchable and screen-printed electrochemical sensor for glucose determination in human perspiration [J].
Abellan-Llobregat, A. ;
Jeerapan, Itthipon ;
Bandodkar, A. ;
Vidal, L. ;
Canals, A. ;
Wang, J. ;
Morallon, E. .
BIOSENSORS & BIOELECTRONICS, 2017, 91 :885-891
[3]   Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes [J].
Ahn, Bok Y. ;
Duoss, Eric B. ;
Motala, Michael J. ;
Guo, Xiaoying ;
Park, Sang-Il ;
Xiong, Yujie ;
Yoon, Jongseung ;
Nuzzo, Ralph G. ;
Rogers, John A. ;
Lewis, Jennifer A. .
SCIENCE, 2009, 323 (5921) :1590-1593
[4]   All rGO-on-PVDF-nanofibers based self-powered electronic skins [J].
Ai, Yuanfei ;
Lou, Zheng ;
Chen, Shuai ;
Chen, Di ;
Wang, Zhiming M. ;
Jiang, Kai ;
Shen, Guozhen .
NANO ENERGY, 2017, 35 :121-127
[5]   Graphene Electronic Tattoo Sensors [J].
Ameri, Shideh Kabiri ;
Ho, Rebecca ;
Jang, Hongwoo ;
Tao, Li ;
Wang, Youhua ;
Wang, Liu ;
Schnyer, David M. ;
Akinwande, Deji ;
Lu, Nanshu .
ACS NANO, 2017, 11 (08) :7634-7641
[6]   Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review [J].
Amjadi, Morteza ;
Kyung, Ki-Uk ;
Park, Inkyu ;
Sitti, Metin .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (11) :1678-1698
[7]   Parallel Microcracks-based Ultrasensitive and Highly Stretchable Strain Sensors [J].
Amjadi, Morteza ;
Turan, Mehmet ;
Clementson, Cameron P. ;
Sitti, Metin .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (08) :5618-5626
[8]   Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire-Elastomer Nanocomposite [J].
Amjadi, Morteza ;
Pichitpajongkit, Aekachan ;
Lee, Sangjun ;
Ryu, Seunghwa ;
Park, Inkyu .
ACS NANO, 2014, 8 (05) :5154-5163
[9]   Linearly and Highly Pressure-Sensitive Electronic Skin Based on a Bioinspired Hierarchical Structural Array [J].
Bae, Geun Yeol ;
Pak, Sang Woo ;
Kim, Daegun ;
Lee, Giwon ;
Kim, Do Hwan ;
Chung, Yoonyoung ;
Cho, Kilwon .
ADVANCED MATERIALS, 2016, 28 (26) :5300-+
[10]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/NNANO.2010.132, 10.1038/nnano.2010.132]