Classification of EEG signal using convolutional neural networks

被引:0
|
作者
Wang, Jianhua [1 ]
Yu, Gaojie [1 ]
Zhong, Liu [1 ]
Chen, Weihai [1 ]
Sun, Yu [2 ]
机构
[1] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
[2] Zhejiang Univ, Dept Biomed Engn, Hangzhou 310027, Peoples R China
来源
PROCEEDINGS OF THE 2019 14TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2019) | 2019年
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Electroencephalography (EEG); Motor Imagery (MI); Convolutional Neural Network (CNN); SINGLE-TRIAL EEG; MOTOR IMAGERY;
D O I
10.1109/iciea.2019.8834381
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electroencephalography (EEG) signal recorded during motor imagery (MI) has been widely applied in noninvasive brain-computer interfaces (Bats) as a communication approach. As an important issue in BCI systems, signal classification has been attached to increasingly attention. This paper presents a new classification method based on the deep convolutional neural network (CNN) for MI-EEG. Compared with other three classification methods (LDA, SVM, MLP), the results demonstrate that CNN can provide better classification performance. The present study shows that the proposed method is effective to classify MI and have potential to be a proper choice for BCI applications. The proposed paradigm could be further implemented by optimizing the network structure.
引用
收藏
页码:1694 / 1698
页数:5
相关论文
共 50 条
  • [1] Classification of epileptic EEG recordings using signal transforms and convolutional neural networks
    San-Segundo, Ruben
    Gil-Martin, Manuel
    Fernando D'Haro-Enriquez, Luis
    Manuel Pardo, Jose
    COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 109 (148-158) : 148 - 158
  • [2] EEG SIGNAL DIMENSIONALITY REDUCTION AND CLASSIFICATION USING TENSOR DECOMPOSITION AND DEEP CONVOLUTIONAL NEURAL NETWORKS
    Taherisadr, Mojtaba
    Joneidi, Mohsen
    Rahnavard, Nazanin
    2019 IEEE 29TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2019,
  • [3] EEG Signal Classification Using Convolutional Neural Networks on Combined Spatial and Temporal Dimensions for BCI Systems
    Anwar, Ayman M.
    Eldeib, Ayman M.
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 434 - 437
  • [4] Convolutional neural networks model for emotion recognition using EEG signal
    Ahmad I.S.
    Shuai P.R.
    Lingyue W.
    Saminu S.
    Isselmou A.E.K.
    Cai Z.
    Javaid I.
    Kamhi S.
    Kulsum U.
    International Journal of Circuits, Systems and Signal Processing, 2021, 15 : 417 - 433
  • [5] Emotional EEG classification using connectivity features and convolutional neural networks
    Moon, Seong-Eun
    Chen, Chun-Jui
    Hsieh, Cho-Jui
    Wang, Jane-Ling
    Lee, Jong-Seok
    NEURAL NETWORKS, 2020, 132 : 96 - 107
  • [6] EEG signal analysis using classification techniques: Logistic regression, artificial neural networks, support vector machines, and convolutional neural networks
    Guerrero, Maria Camila
    Parada, Juan Sebastian
    Espitia, Helbert Eduardo
    HELIYON, 2021, 7 (06)
  • [7] Motor Imagery EEG Signal Classification Using Optimized Convolutional Neural Network
    Thiyam, Deepa Beeta
    Raymond, Shelishiyah
    Avasarala, Padmanabha Sarma
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (08): : 273 - 279
  • [8] ECG signal classification using Convolutional Neural Networks for Biometric Identification
    Cordos, Claudia
    Mihaila, Laura
    Farago, Paul
    Hintea, Sorin
    2021 44TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2021, : 167 - 170
  • [9] EEG signal classification using wavelet feature extraction and neural networks
    Jahankhani, Pari
    Kodogiannis, Vassilis
    Revett, Kenneth
    IEEE JOHN VINCENT ATANASOFF 2006 INTERNATIONAL SYMPOSIUM ON MODERN COMPUTING, PROCEEDINGS, 2006, : 120 - +
  • [10] Motor Imagery EEG Signal Classification Using Deep Neural Networks
    Nakra, Abhilasha
    Duhan, Manoj
    COMPUTING SCIENCE, COMMUNICATION AND SECURITY, 2022, 1604 : 128 - 140