Synthesis and characterization of high performing Fe-N-C catalyst for oxygen reduction reaction (ORR) in Alkaline Exchange Membrane Fuel Cells

被引:219
作者
Hbssen, Md Mosaddek [1 ]
Artyushkova, Kateryna [1 ]
Atanassov, Plamen [1 ]
Serov, Alexey [1 ]
机构
[1] Univ New Mexico, CMEM, Dept Chem & Biol Engn, Albuquerque, NM 87131 USA
关键词
Alkaline fuel cell; Oxygen reduction reaction (ORR); H-2/O-2 fuel cell; Fe-N-C catalyst; PGM-Free catalyst; TRANSITION-METAL CHALCOGENIDES; DOPED CARBON AEROGELS; CATHODE CATALYST; ACTIVE-SITES; BIFUNCTIONAL ELECTROCATALYSTS; NONNOBLE ELECTROCATALYSTS; RECENT PROGRESS; NITROGEN; IRON; EVOLUTION;
D O I
10.1016/j.jpowsour.2017.08.036
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this article, three different Fe-N-C oxygen reduction reaction (ORR) catalysts derived from different organic molecules i.e. Fe-NMG, Fe-NMP, Fe-MBZ have been synthesized, characterized by physical chemical methods and studied in the reaction of oxygen reduction (ORR). It is found that Fe-NMG shows higher ORR performance than Fe-NMP and Fe-MBZ, by both rotating ring disk electrode (RRDE) and fuel cell tests. From characterization and surface analysis, it can be explained that the presence of higher amount of surface oxides and pyridinic nitrogen is the main reason for better performance towards ORR in alkaline media. To achieve the highest performance in alkaline exchange membrane fuel cell (AEMFC), the optimization of catalyst layer composition using various concentrations of ionomer (Tokuyama, AS4) was performed. At the optimum cathode layer configuration utilizing Fe-NMG produces the peak power density of 218 mWcm(-2), which is one of the highest values presented in the open literature. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:214 / 221
页数:8
相关论文
共 88 条
[1]   Characterization and use of anionic membranes for alkaline fuel cells [J].
Agel, E ;
Bouet, J ;
Fauvarque, JF .
JOURNAL OF POWER SOURCES, 2001, 101 (02) :267-274
[2]   The catalytic centre of transition metal chalcogenides vis-a-vis the oxygen reduction reaction: An in situ electrochemical EXAFS study [J].
AlonsoVante, N ;
FieberErdmann, M ;
Rossner, H ;
HolubKrappe, E ;
Giorgetti, C ;
Tadjeddine, A ;
Dartyge, E ;
Fontaine, A ;
Frahm, R .
JOURNAL DE PHYSIQUE IV, 1997, 7 (C2) :887-889
[3]   KINETICS STUDIES OF OXYGEN REDUCTION IN ACID-MEDIUM ON NOVEL SEMICONDUCTING TRANSITION-METAL CHALCOGENIDES [J].
ALONSOVANTE, N ;
TRIBUTSCH, H ;
SOLORZAFERIA, O .
ELECTROCHIMICA ACTA, 1995, 40 (05) :567-576
[4]   Metal oxides/CNT nano-composite catalysts for oxygen reduction/oxygen evolution in alkaline media [J].
Andersen, Nalin I. ;
Serov, Alexey ;
Atanassov, Plamen .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 163 :623-627
[5]   Chemistry of Multitudinous Active Sites for Oxygen Reduction Reaction in Transition Metal-Nitrogen-Carbon Electrocatalysts [J].
Artyushkova, Kateryna ;
Serov, Alexey ;
Rojas-Carbonell, Santiago ;
Atanassov, Plamen .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (46) :25917-25928
[6]   Structural correlations: Design levers for performance and durability of catalyst layers [J].
Artyushkova, Kateryna ;
Atanassov, Plamen ;
Dutta, Monica ;
Wessel, Silvia ;
Colbow, Vesna .
JOURNAL OF POWER SOURCES, 2015, 284 :631-641
[7]   Oxygen-deficient BaTiO3-x perovskite as an efficient bifunctional oxygen electrocatalyst [J].
Chen, Ching-Fong ;
King, Graham ;
Dickerson, Robert M. ;
Papin, Pallas A. ;
Gupta, Shiva ;
Kellogg, William R. ;
Wu, Gang .
NANO ENERGY, 2015, 13 :423-432
[8]   A review on non-precious metal electrocatalysts for PEM fuel cells [J].
Chen, Zhongwei ;
Higgins, Drew ;
Yu, Aiping ;
Zhang, Lei ;
Zhang, Jiujun .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3167-3192
[9]   Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction [J].
Chung, Hoon T. ;
Won, Jong H. ;
Zelenay, Piotr .
NATURE COMMUNICATIONS, 2013, 4
[10]   Effect of electrode design and operating condition on performance of hydrogen alkaline membrane fuel cell [J].
Deng, Hao ;
Wang, Dawei ;
Wang, Renfang ;
Xie, Xu ;
Yin, Yan ;
Du, Qing ;
Jiao, Kui .
APPLIED ENERGY, 2016, 183 :1272-1278