A recurrent neural network for classification of unevenly sampled variable stars

被引:110
作者
Naul, Brett [1 ]
Bloom, Joshua S. [1 ]
Perez, Fernando [2 ,3 ,4 ]
van der Walt, Stefan [3 ]
机构
[1] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Berkeley Inst Data Sci, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Dept Data Sci & Technol, Berkeley, CA 94720 USA
来源
NATURE ASTRONOMY | 2018年 / 2卷 / 02期
基金
美国国家科学基金会;
关键词
D O I
10.1038/s41550-017-0321-z
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Astronomical surveys of celestial sources produce streams of noisy time series measuring flux versus time ('light curves'). Unlike in many other physical domains, however, large (and source-specific) temporal gaps in data arise naturally due to intranight cadence choices as well as diurnal and seasonal constraints1-5. With nightly observations of millions of variable stars and transients from upcoming surveys(4,6), efficient and accurate discovery and classification techniques on noisy, irregularly sampled data must be employed with minimal human-in-the-loop involvement. Machine learning for inference tasks on such data traditionally requires the laborious hand-coding of domain-specific numerical summaries of raw data ('features')(7). Here, we present a novel unsupervised autoencoding recurrent neural network(8) that makes explicit use of sampling times and known heteroskedastic noise properties. When trained on optical variable star catalogues, this network produces supervised classification models that rival other best-in-class approaches. We find that autoencoded features learned in one time-domain survey perform nearly as well when applied to another survey. These networks can continue to learn from new unlabelled observations and may be used in other unsupervised tasks, such as forecasting and anomaly detection.
引用
收藏
页码:151 / 155
页数:5
相关论文
共 30 条
[1]   The macho project LMC variable star inventory .2. LMC RR lyrae stars - Pulsational characteristics and indications of a global youth of the LMC [J].
Alcock, C ;
Allsman, RA ;
Axelrod, TS ;
Bennett, DP ;
Cook, KH ;
Freeman, KC ;
Griest, K ;
Marshall, SL ;
Peterson, BA ;
Pratt, MR ;
Quinn, PJ ;
Rodgers, AW ;
Stubbs, CW ;
Sutherland, S ;
Welch, DL .
ASTRONOMICAL JOURNAL, 1996, 111 (03) :1146-1155
[2]  
Bloom JS, 2012, CH CRC DATA MIN KNOW, P89
[3]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[4]  
Charnock T., 2016, DEEP RECURRENT NEURA
[5]   Recurrent Neural Networks for Multivariate Time Series with Missing Values [J].
Che, Zhengping ;
Purushotham, Sanjay ;
Cho, Kyunghyun ;
Sontag, David ;
Liu, Yan .
SCIENTIFIC REPORTS, 2018, 8
[6]  
Cho K., 2014, ARXIV14061078, P1724, DOI 10.3115/V1/D14-1179
[7]   Real-time data mining of massive data streams from synoptic sky surveys [J].
Djorgovski, S. G. ;
Graham, M. J. ;
Donalek, C. ;
Mahabal, A. A. ;
Drake, A. J. ;
Turmon, M. ;
Fuchs, T. .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2016, 59 :95-104
[8]   Random forest automated supervised classification of Hipparcos periodic variable stars [J].
Dubath, P. ;
Rimoldini, L. ;
Sueveges, M. ;
Blomme, J. ;
Lopez, M. ;
Sarro, L. M. ;
De Ridder, J. ;
Cuypers, J. ;
Guy, L. ;
Lecoeur, I. ;
Nienartowicz, K. ;
Jan, A. ;
Beck, M. ;
Mowlavi, N. ;
De Cat, P. ;
Lebzelter, T. ;
Eyer, L. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 414 (03) :2602-2617
[9]  
FRIEDMAN JH, 1989, TECHNOMETRICS, V31, P3, DOI 10.2307/1270359
[10]   Reducing the dimensionality of data with neural networks [J].
Hinton, G. E. ;
Salakhutdinov, R. R. .
SCIENCE, 2006, 313 (5786) :504-507